题目内容
【题目】某中学对高二甲、乙两个同类班级进行“加强‘语文阅读理解’训练对提高‘数学应用题’得分率作用”的试验,其中甲班为试验班(加强语文阅读理解训练),乙班为对比班(常规教学,无额外训练),在试验前的测试中,甲、乙两班学生在数学应用题上的得分率基本一致,试验结束后,统计几次数学应用题测试的平均成绩(均取整数)如下表所示:
60分以下 | 60~70分 | 71~80分 | 81~90分 | 91~100分 | |
甲班/人数 | 3 | 6 | 11 | 18 | 12 |
乙班/人数 | 4 | 8 | 13 | 15 | 10 |
现规定平均成绩在80分以上(不含80分)的为优秀.参考公式及数据:.
0.05 | 0.40 | 0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
0.455 | 0.708 | 1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)试分别估计两个班级的优秀率;
(2)由以上统计数据填写下面列联表,并问是否有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.
优秀人数 | 非优秀人数 | 总计 | |
甲班 | |||
乙班 | |||
总计 |
【答案】(1)甲乙两班的优秀率分别为和;(2)列联表见解析,没有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.
【解析】
(1)每个班的优秀人数与总人数的百分比,即为优秀率;
(2)填写列联表,根据公式求出的观测值,结合参考数据,得到答案.
(1)由题意,甲、乙两班均有学生50人,甲班优秀人数为30人,优秀率为;
乙班优秀人数为25人,优秀率为.
所以甲乙两班的优秀率分别为和.
(2)由题意可得列联表
优秀人数 | 非优秀人数 | 总计 | |
甲班 | 30 | 20 | 50 |
乙班 | 25 | 25 | 50 |
总计 | 55 | 45 | 100 |
根据公式可得的观测值
.
由参考数据可知,没有75%的把握认为“加强‘语文阅读理解’训练对提高‘数学应用题’得分率”有帮助.
【题目】某校高一年级新入学360名学生,其中200名男生,160名女生.学校计划为家远的高一新生提供5间男生宿舍和4间女生宿舍,每间宿舍可住2名学生.该校“数学与统计”社团的学生为了解全体高一学生家庭居住地与学校的距离情况,按照性别进行分层随机抽样,其中抽取的40名男生家庭居住地与学校的距离数据(单位:)如下:
5.0 | 6.0 | 7.0 | 7.5 | 8.0 | 8.4 | 4.0 | 3.5 | 4.5 |
4.3 | 5.0 | 4.0 | 3.0 | 2.5 | 4.0 | 1.6 | 6.0 | 6.5 |
5.5 | 5.7 | 3.1 | 5.2 | 4.4 | 5.0 | 6.4 | 3.5 | 7.0 |
4.0 | 3.0 | 3.4 | 6.9 | 4.8 | 5.6 | 5.0 | 5.6 | 6.5 |
3.0 | 6.0 | 7.0 | 6.6 |
(1)根据以上样本数据推断,若男生甲家庭居中地与学校距离为,他是否能住宿?说明理由;
(2)通过计算得到男生样本数据平均值为,女生样本数据平均值为,求所有样本数据的平均值.