题目内容
【题目】如图,在四棱锥PABCD中,侧面PAB⊥底面ABCD,底面ABCD为矩形,PA=PB,O为AB的中点,OD⊥PC.
(1)求证:OC⊥PD;
(2)若PD与平面PAB所成的角为30°,求二面角DPCB的余弦值.
【答案】见解析
【解析】解:(1)证明:连接OP,∵PA=PB,O为AB的中点,
∴OP⊥AB.
∵侧面PAB⊥底面ABCD,
∴OP⊥平面ABCD,
∴OP⊥OD,OP⊥OC.
∵OD⊥PC,OP∩PC=P,
∴OD⊥平面OPC,
∵OC平面OPC,∴OD⊥OC,
又OP⊥OC,OD∩OP=O,
∴OC⊥平面OPD,
∵PD平面OPD,∴OC⊥PD.
(2)取CD的中点E,以O为坐标原点,OE,OB,OP所在的直线分别为x轴,y轴,z轴建立空间直角坐标系Oxyz。
在矩形ABCD中,由(1)得OD⊥OC,
∴AB=2AD,不妨设AD=1,则AB=2。
∵侧面PAB⊥底面ABCD,底面ABCD为矩形,
∴DA⊥平面PAB,CB⊥平面PAB,△DPA≌△CPB,
∴∠DPA为直线PD与平面PAB所成的角,
∴∠DPA=30°,∠CPB=30°,PA=PB=,
∴B(0,1,0),C(1,1,0),D(1,-1,0),P(0,0,),从而=(1,1,-),=(0,-2,0).
设平面PCD的法向量为n1=(x1,y1,z1),
得
可取n1=(,0,1).
同理,可取平面PCB的一个法向量为n2=(0,-,-1).
于是cos〈n1,n2〉==-,
∴二面角DPCB的余弦值为-。
【题目】某商店为了吸引顾客,设计了一个摸球小游戏,顾客从装有1个红球,1个白球,3个黑球的袋中一次随机的摸2个球,设计奖励方式如下表:
结果 | 奖励 |
1红1白 | 10元 |
1红1黑 | 5元 |
2黑 | 2元 |
1白1黑 | 不获奖 |
(1)某顾客在一次摸球中获得奖励X元,求X的概率分布表与数学期望;
(2)某顾客参与两次摸球,求他能中奖的概率.