题目内容

如图,已知两个正四棱锥P-ABCD与Q-ABCD的高都是2,AB=4。
(1)证明PQ⊥平面ABCD;
(2)求异面直线AQ与PB所成的角;
(3)求点P到平面QAD的距离。
解:(1)连结AC、BD,设
由P-ABCD与Q-ABCD都是正四棱锥,
所以PO⊥平面ABCD,QO⊥平面ABCD
从而P、O、Q三点在一条直线上,
所以PQ⊥平面ABCD。
(2)由题设知,ABCD是正方形,
所以AC⊥BD
由(1),QO⊥平面ABCD
故可分别以直线CA、DB、QP为x轴、y轴、z轴建立空间直角坐标系(如图),
由题条件,相关各点的坐标分别是P(0,0,2),A(,0,0),Q(0,0,-2),B(0,,0)
所以
于是
从而异面直线AQ与PB所成的角是
(3)由(2),点D的坐标是(0,-,0),
是平面QAD的一个法向量,

取x=1,得
所以点P到平面QAD的距离
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网