题目内容
P为直线y=x与双曲线=1(a>0,b>0)左支的交点,F1是左焦点,PF1垂直于x轴,则双曲线的离心率e=________.
【解析】由得又PF1垂直于x轴,所以=c,即离心率为e=.
已知函数f(x)=-x3+x2,g(x)=aln x,a∈R.
(1)若对任意x∈[1,e],都有g(x)≥-x2+(a+2)x恒成立,求a的取值范围;
(2)设F(x)=若P是曲线y=F(x)上异于原点O的任意一点,在曲线y=F(x)上总存在另一点Q,使得△POQ中的∠POQ为钝角,且PQ的中点在y轴上,求a的取值范围.
设四面体的六条棱的长分别为1,1,1,1,和a且长为a的棱与长为的棱异面,则a的取值范围是________.
已知集合A={2,5},在A中可重复的依次取出三个数a,b,c,则“以a,b,c为边恰好构成三角形”的概率是________.
复数(1+2i)2的共轭复数是________.
若实数x,y满足,则x2+(y+1)2的最大值与最小值的差为________.
已知函数y=f(x)(x∈R)上任一点(x0,f(x0))处的切线斜率k=(x0-3)(x0+1)2,则该函数的单调递减区间为________.
已知f(x)=x3+ax2+bx+a2在x=1处有极值为10,则a+b=________.
若α,β∈(0,π),cos α=-,tan β=-,则α+2β=________.