题目内容
![](http://thumb.zyjl.cn/pic3/upload/images/201301/38/552eb306.png)
(I)求证:A1D1⊥平面BB1C1C;
(II)求三棱锥C1-A1D1C与多面体A1B1D1CAB的体积的比值.
分析:(Ⅰ)由题设条件推导出AA1⊥AB,AA1⊥AC,由此能够证明A1D1⊥平面BB1C1C.
(Ⅱ)由AB=2,AC=2,CC1=2,C1B1=2
,C1D1=
,A1D1=
,分别求出VABC-A1B1C1和三棱锥C1-A1D1C的体积,由此能求出结果.
(Ⅱ)由AB=2,AC=2,CC1=2,C1B1=2
2 |
2 |
2 |
解答:解:(Ⅰ)∵在三棱柱ABC-A1B1C1中,侧面ABB1A,ACC1A1均为正方形,
∠BAC=90°,AB=2,点D1是棱B1C1的中点,
∴AA1⊥AB,AA1⊥AC,
∴AA1⊥平面ABC,
∴CC1⊥平面ABC,
∵A1D1?平面A1B1C1,D1是B1C1的中点,
∴A1D1⊥B1C1,
∵CC1∩B1C1,∴A1D1⊥平面BB1C1C.
(Ⅱ)∵AB=2,AC=2,CC1=2,C1B1=2
,C1D1=
,A1D1=
,
∴VABC-A1B1C1=
×AB×AC×CC1
=
×2×2×2=4.
VC1-A1D1C=VA1-D1C1C
=
×
×CC1×C1D1×A1D1
=
×
×2×
×
=
.
∴三棱锥C1-A1D1C与多面体A1B1D1CAB的体积的比值=
÷(4-
)=
.
∠BAC=90°,AB=2,点D1是棱B1C1的中点,
∴AA1⊥AB,AA1⊥AC,
∴AA1⊥平面ABC,
∴CC1⊥平面ABC,
∵A1D1?平面A1B1C1,D1是B1C1的中点,
∴A1D1⊥B1C1,
∵CC1∩B1C1,∴A1D1⊥平面BB1C1C.
(Ⅱ)∵AB=2,AC=2,CC1=2,C1B1=2
2 |
2 |
2 |
∴VABC-A1B1C1=
1 |
2 |
=
1 |
2 |
VC1-A1D1C=VA1-D1C1C
=
1 |
3 |
1 |
2 |
=
1 |
3 |
1 |
2 |
2 |
2 |
2 |
3 |
∴三棱锥C1-A1D1C与多面体A1B1D1CAB的体积的比值=
2 |
3 |
2 |
3 |
1 |
5 |
点评:本题考查直线与平面垂直的证明,考查三棱锥与多面体的体积之比,解题时要认真审题,注意空间思维能力的培养.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目
![精英家教网](http://thumb.zyjl.cn/pic3/upload/images/201108/85/bfcaa7a4.png)
A、3:2 | B、7:5 | C、8:5 | D、9:5 |