题目内容
对n∈N?不等式
所表示的平面区域为Dn,把Dn内的整点(横坐标与纵坐标均为整数的点)按其到原点的距离从近到远排成点列(x1,y1),(x2,y2),?,(xn,yn),
求xn,yn;
(2)数列{an}满足a1=x1,且n≥2时an=yn2
证明:当n≥2时,
;
(3)在(2)的条件下,试比较
与4的大小关系.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002759057918.png)
求xn,yn;
(2)数列{an}满足a1=x1,且n≥2时an=yn2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002759057849.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002759072795.png)
(3)在(2)的条件下,试比较
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002759088836.png)
(1)![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027591041114.png)
(2)运用整体的思想,作差法来得到化简证明。
(3)
<4
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027591041114.png)
(2)运用整体的思想,作差法来得到化简证明。
(3)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002759088836.png)
试题分析:解:(1)当n=1时,(x1,y1)=(1,1)
n=2时,(x2,y2)="(1,2)" (x3,y3)=(1,3)
n=3时,(x4,y4)=(1,4)
n时 (xn,yn)=(1,n)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027591041114.png)
(2)由
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027591353286.png)
(3)当n=1时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002759150775.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027591661050.png)
由(2)知当n≥3时,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002759182858.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002759197919.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027591972049.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027592281258.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027592281463.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027592441552.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027592602419.png)
=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824002759275833.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240027592911728.png)
点评:对于数列与不等式结合的证明试题,是个难点,一般要用到放缩法来证明,需要同学们注意积累相关的放缩的方法。
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目