题目内容
【题目】设x>0,求证:1+x+x2+…+xn≥(2n+1)xn
【答案】证明:一:当x≥1时1≤x≤x2≤…≤xn ,
由排序原理:顺序和≥反序和,得
1·1+x·x+x2·x2+…+xn·xn
≥1·xn+x·xn-1+…+xn-1·x+xn·1,
即1+x2+x4+…+x2n≥(n+1)xn.①
又因为x , x2 , …,xn , 1为序列1,x , x2 , …,xn的一个排列,于是再次由排序原理:乱序和≥反序和,得
1·x+x·x2+…+xn-1·xn+xn·1≥1·xn+x·xn-1+…+xn-1·x+xn·1,
得x+x3+…+x2n-1+xn≥(n+1)xn.②
将①和②相加得
1+x+x2+…+xn≥(2n+1)xn.
二:当0<x<1时,1>x>x2>…>xn ,
但①②仍然成立,于是③也成立.
综合一、二,证毕.
【解析】考查排序不等式的应用.解答本题需要注意:题目中只给出了x>0,但对于x≥1,x<1没有明确,因此需要进行分类讨论.
【考点精析】解答此题的关键在于理解排序不等式的相关知识,掌握排序不等式(排序原理):设为两组实数.是的任一排列,则(反序和乱序和顺序和)当且仅当或时,反序和等于顺序和.
练习册系列答案
相关题目
【题目】某市2010年至2016年新开楼盘的平均销售价格y(单位:千元/平米)的统计数据如表:
年份 | 2010 | 2011 | 2012 | 2013 | 2014 | 2015 | 2016 |
年份代号x | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
销售价格y | 3 | 3.4 | 3.7 | 4.5 | 4.9 | 5.3 | 6 |
(1)求y关于x的线性回归方程;
(2)利用(Ⅰ)中的回归方程,分析2010年至2016年该市新开楼盘平均销售价格的变化情况,并预测该市2018年新开楼盘的平均销售价格.
附:参考数据及公式: , , .