题目内容

如图所示,在四棱锥P-ABCD中,底面ABCD为矩形,PA⊥平面ABCD,点E在线段PC上,PC⊥平面BDE.

(1) 证明:BD⊥平面PAC;
(2) 若PA=1,AD=2,求二面角B-PC-A的正切值.

(1)见解析;(2).

解析试题分析:(1)先利用直线与平面垂直的性质定理,得到 和 ,因为 ,所以利用直线与平面垂直的判定定理可知, ;(2)首先分别以射线轴,轴,轴的正半轴建立空间直角坐标系,由直线与平面垂直的性质定理得到,那么矩形为正方形,由此可知此正方形的边的长度,根据坐标系表示四棱锥出各个顶点的坐标,分别求出平面和平面的法向量的坐标,根据二面角与其法向量夹角的关系,求得二面角的余弦值,再由同角三角函数的基本关系得到所求二面角的正切值.
试题解析:(1)证明 ∵,∴.2分
同理由,可证得
,∴.                               4分
(2)如图,分别以射线轴,轴,轴的正半轴建立空间直角坐标系

由(1)知,又, ∴
故矩形为正方形,∴.     6分


设平面的一个法向量为,则,即
,取,得
,∴为平面的一个法向量.10分
所以.                  11分
设二面角的平面角为,由图知,所以
∴ 所以,即二面角的正切值为.    12分
考点:1.直线与平面垂直的判定定理;2.直线与平面垂直的性质定理;3.平面和平面所成的角(二面角);4.勾股定理;5.同角三角函数的基本关系;6.平面的法向量

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网