题目内容

20.如图,用一边长为$\sqrt{2}$的正方形硬纸,按各边中点垂直折起四个小三角形,做成一个蛋巢,将表面积为4π的鸡蛋(视为球体)放入其中,蛋巢形状保持不变,则鸡蛋中心(球心)与蛋巢底面的距离为$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$.

分析 有条件利用球的截面的性质求得球心到截面圆的距离,再求出垂直折起的4个小直角三角形的高,相加即得所求

解答 解:由题意可得,蛋巢的底面是边长为1的正方形,故经过4个顶点截鸡蛋所得的截面圆的直径为1,
由于鸡蛋的表面积为4π,故鸡蛋(球)的半径为1,故球心到截面圆的距离为$\sqrt{1-\frac{1}{4}}$=$\frac{\sqrt{3}}{2}$,
而垂直折起的4个小直角三角形的高为$\frac{1}{2}$,
故鸡蛋中心(球心)与蛋巢底面的距离为$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$,
故答案为:$\frac{\sqrt{3}}{2}$+$\frac{1}{2}$.

点评 本题主要考查球的截面的性质,图形的折叠问题,点、线、面间的位置关系,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网