题目内容

如图,在三棱锥A﹣BCD中,E、F、G、H分别是边AB、BC、CD、DA的中点.
(1)求证:四边形EFGH是平行四边形;
(2)若AC=BD,求证:四边形EFGH是菱形;
(3)当AC与BD满足什么条件时,四边形EFGH是正方形.
解:(1)证明:在△ABC中,E、F分别是边AB、BC中点,
所以EF∥AC,且EF= AC,
同理有GH∥AC,且GH= AC,
∴EF∥GH且EF=GH,
故四边形EFGH是平行四边形.
(2)证明:仿(1)中分析,EH∥BD且EH= BD,
若AC=BD,则有EH=EF,
又因为四边形EFGH是平行四边形,
∴四边形EFGH是菱形.
(3)当AC=BD且AC⊥BD时,
四边形EFGH是正方形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网