题目内容
【题目】已知实数,函数
.
(1)当时,求
的最小值;
(2)当时,判断
的单调性,并说明理由;
(3)求实数的范围,使得对于区间
上的任意三个实数
,都存在以
为边长的三角形.
【答案】(1);(2)递增,理由见解析;(3)
.
【解析】
试题分析:(1)研究函数问题,一般先研究函数的性质,如奇偶性,单调性,周期性等等,如本题中函数是偶函数,因此其最小值我们只要在
时求得即可;(2)
时,
可化简为
,下面我们只要按照单调性的定义就可证明在
上函数是单调递增的,当然在
上是递减的;(3)处理此问题,首先通过换元法把问题简化,设
,则函数
变为
,问题变为求实数
的范围,使得在区间
上,恒有
.对于函数
,我们知道,它在
上递减,在
上递增,故我们要讨论它在区间
上的最大(小)值,就必须分类讨论,分类标准显然是
,
,
,在
时还要讨论最
大值在区间
的哪个端点取得,也即共分成四类.
试题解析:(1)研究函数问题,一般先研究函数的性质,如奇偶性,单调性,周期性等等,如本题中函数是偶函数,因此其最小值我们只要在
时求得即可;
(2)时,
可化简为
,下面我们只要按照单调性的定义就可证明在
上函数是单调递增的,当然在
上是递减的;
(3)处理此问题,首先通过换元法把问题简化,设,则函数
变为
,问题变为求实数
的范围,使得在区间
上,恒有
.对于函数
,我们知道,它在
上递减,在
上递增,故我们要讨论它在区间
上的最大(小)值,就必须分类讨论,分类标准显然是
,
,
,在
时还要讨论最
大值在区间
的哪个端点取得,也即共分成四类.
(2)时,
时,
递增;
时,
递减;
为偶函数.所以只对
时,说明
递增.
设,所以
,得
所以时,
递增;
(3),
,
从而原问题等价于求实数的范围,使得在区间
上,
恒有.
①当时,
在
上单调递增,
由
得
,
从而;
②当时,
在
上单调递减,在
上单调递增,
,
由得
,从而
;
③当时,
在
上单调递减,在
上单调递增,
,
由得
,从而
;
④当时,
在
上单调递减,
由得
,从而
;
综上,.

【题目】城市公交车的数量若太多则容易造成资源的浪费;若太少又难以满足乘客需求.某市公交公司在某站台的60名候车乘客中随机抽取15人,将他们的候车时间作为样本分成5组,如下表所示(单位:分钟):
组别 | 候车时间 | 人数 |
一 |
| 2 |
二 | 6 | |
三 | 4 | |
四 | 2 | |
五 | 1 |
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)若从上表第三、四组的6人中任选2人作进一步的调查,求抽到的两人恰好来自不同组的概率.
【题目】为及时了解适龄公务员对开放生育二胎政策的态度,某部门随机调查了90位30岁到40岁的公务员,得到情况如下表:
(1)判断是否有99%以上的把握认为“生二胎意愿与性别有关”,并说明理由;
(2)现把以上频率当作概率,若从社会上随机独立抽取三位30岁到40岁的男公务员访问,求这三人中至少有一人有意愿生二胎的概率.
(3)已知15位有意愿生二胎的女性公务员中有两位来自省妇联,该部门打算从这15位有意愿生二胎的女性公务员中随机邀请两位来参加座谈,设邀请的2人中来自省女联的人数为,求
的分布列及数学期望
.
男性公务员 | 女性公务员 | 总计 | |
有意愿生二胎 | 30 | 15 | 45 |
无意愿生二胎 | 20 | 25 | 45 |
总计 | 50 | 40 | 90 |
附:
0.050 | 0.010 | 0.001 | |
3.841 | 6.635 | 10.828 |