题目内容
6.设p:f(x)=ex+lnx+2x2+mx+1在(0,+∞)上单调递增,q:m≥-5,则p是q的必要不充分条件.分析 首先求出函数的导数,然后根据导数与函数单调性的关系求出m的范围.结合充分条件和必要条件的定义进行判断即可.
解答 解:由题意得f′(x)=ex+$\frac{1}{x}$+4x+m,
∵f(x)=ex+lnx+2x2+mx+1在(0,+∞)内单调递增,
∴f′(x)≥0,即ex+$\frac{1}{x}$+4x+m≥0在定义域内恒成立,
由于$\frac{1}{x}$+4x≥4,当且仅当$\frac{1}{x}$=4x,即x=$\frac{1}{2}$时等号成立,
故对任意的x∈(0,+∞),必有ex+$\frac{1}{x}$+4x>5
∴m≥-ex-$\frac{1}{x}$-4x不能得出m≥-5
但当m≥-5时,必有ex+$\frac{1}{x}$+4x+m≥0成立,即f′(x)≥0在x∈(0,+∞)上成立
∴p不是q的充分条件,p是q的必要条件,即p是q的必要不充分条件
故答案为:必要不充分
点评 本题考查充分条件和必要条件以及函数导数与单调性的关系.属于函数恒成立问题,难度较大,综合性强.
练习册系列答案
相关题目
17.终边与x轴重合的角α的集合是( )
A. | {α|α=2kπ,k∈Z} | B. | {α|α=kπ,k∈Z} | C. | {α|α=$\frac{kπ}{2}$,k∈Z} | D. | {α|α=kπ+$\frac{π}{2}$,k∈Z} |
14.对于函数f(x)=aex+x,若存在实数m,n,使得f(x)≥0的解集为[m,n](m<n),则实数a的取值范围是( )
A. | (-$\frac{1}{e}$,0)∪(0,+∞) | B. | [-$\frac{1}{e}$)∪(0,+∞) | C. | (-$\frac{1}{e}$,0) | D. | [-$\frac{1}{e}$,0) |
11.已知某保险公司每辆车的投保金额均为2800元,公司利用简单随机抽样的方法,对投保车辆进行抽样,样本中每辆车的赔付结果统计如下:
(1)试根据样本估计赔付金额大于投保金额的概率;
(2)保险公司在赔付金额为2000元、3000元和4000元的样本车辆中,发现车主是新司机的比例分别为1%、2%和4%,现从新司机中任取两人,则这两人的赔付金额之和不小于投保金额之和的概率是多少?
赔付金额(元) | 0 | 1000 | 2000 | 3000 | 4000 |
车辆数 | 500 | 150 | 200 | 100 | 50 |
(2)保险公司在赔付金额为2000元、3000元和4000元的样本车辆中,发现车主是新司机的比例分别为1%、2%和4%,现从新司机中任取两人,则这两人的赔付金额之和不小于投保金额之和的概率是多少?