题目内容
如图,在四棱锥中,底面是正方形,侧面底面.
(Ⅰ)若,分别为,中点,求证:∥平面;
(Ⅱ)求证:;
(Ⅲ)若,求证:平面平面.
(Ⅰ)若,分别为,中点,求证:∥平面;
(Ⅱ)求证:;
(Ⅲ)若,求证:平面平面.
(Ⅰ)详见解析,(Ⅱ)详见解析,(Ⅲ)详见解析.
试题分析:(Ⅰ)证明线面平行,关键在于找出线线平行.本题条件含中点,故从中位线上找线线平行. ,分别为,中点,在△中,是中点,是中点,所以∥.又因为平面,平面,所以∥平面.(Ⅱ)由面面垂直性质定理可得线面垂直,因为平面底面,且平面平面,又,平面,所以面.又因为平面,所以.即.(Ⅲ)证明面面垂直,关键找出线面垂直. 在△中,因为,所以.由(Ⅱ)可知,且,
所以平面.又因为平面,所以平面平面.
证明:(Ⅰ)如图,连结.
因为底面是正方形,
所以与互相平分.
又因为是中点,
所以是中点.
在△中,是中点,是中点,
所以∥.
又因为平面,平面,
所以∥平面. 4分
(Ⅱ)因为平面底面,且平面平面,
又,平面,
所以面.
又因为平面,
所以.即. 9分
(Ⅲ)在△中,因为,所以.
由(Ⅱ)可知,且,
所以平面.
又因为平面,
所以平面平面. 14分
练习册系列答案
相关题目