题目内容

【题目】已知△ABC的三个内角A,B,C所对的边分别为a,b,c,向量=(sinA+sinC,sinB),=(c﹣b,c﹣a),且

(1)求角A的大小;

(2)若a=3,b+c=5,求△ABC的面积.

【答案】(1) A=60°;(2) .

【解析】

(1)根据向量平行的坐标运算得到b2+c2﹣a2=bc,结合余弦定理可得到A=60°;(2)根据余弦定理得到bc=,由面积公式得到结果.

(1)∵向量=(sinA+sinC,sinB),=(c﹣b,c﹣a),且

∴由题意结合向量共线可得:(sinA+sinC)(c﹣a)=sinB(c﹣b),

∴由正弦定理可得(a+c)(c﹣a)﹣b(c﹣b)=0,

∴整理可得:b2+c2﹣a2=bc,

∴由余弦定理可得cosA==

∵A为三角形的内角,

∴A=60°;

(2)∵由余弦定理可得b2+c2﹣9=bc,

∴(b+c)2﹣9=3bc,

∴解得:bc=

∴△ABC的面积S=bcsinA==

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网