题目内容
设max{f(x),g(x)}=
,若函数n(x)=x2+px+q(p,q∈R)的图象经过不同的两点(
,0)、(
,0),且存在整数n使得n<
<
<n+1成立,则( )
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240437536161116.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043753631310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043753647339.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043753631310.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043753647339.png)
A.max{n(n),n(n+1)}>1 | B.max{n(n),n(n+1)}<1 |
C.max{n(n),n(n+1)}>![]() | D.max{n(n),n(n+1)}> ![]() |
B
∵n(x)=x2+px+q的图象经过两点(α,0),(β,0),
∴n(x)=x2+px+q=(x-α)(x-β)
∴n(n)=(n-α)(n-β)=(α-n)(β-n),n(n+1)=(n+1-α)(n+1-β),
令α-n=t1,β-n=t2,由于n<α<β<n+1,则0<t1<1,0<t2<1,且0<t1+t2<2,n(n+1)=(1-t1)(1-t2),
则n(n)= t1t2
,即n(n)<1;n(n+1)=(1-t1)(1-t2)
,
∵
,∴n(n+1)<1,∴
,
∴max{n(n),n(n+1)}<1,故选B.
∴n(x)=x2+px+q=(x-α)(x-β)
∴n(n)=(n-α)(n-β)=(α-n)(β-n),n(n+1)=(n+1-α)(n+1-β),
令α-n=t1,β-n=t2,由于n<α<β<n+1,则0<t1<1,0<t2<1,且0<t1+t2<2,n(n+1)=(1-t1)(1-t2),
则n(n)= t1t2
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043753709894.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043753772963.png)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043753787792.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824043753803745.png)
∴max{n(n),n(n+1)}<1,故选B.
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目