题目内容
.(本小题满分12分)
如图,四面体ABCD中,O是BD的中点,△ABD和△BCD均为等边三角形,AB=2,AC=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181528976227.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231815290073058.jpg)
(1)求证:AO⊥平面BCD;
(2)求二面角A—BC—D的余弦值;
(3)求点O到平面ACD的距离.
如图,四面体ABCD中,O是BD的中点,△ABD和△BCD均为等边三角形,AB=2,AC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181528976227.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231815290073058.jpg)
(1)求证:AO⊥平面BCD;
(2)求二面角A—BC—D的余弦值;
(3)求点O到平面ACD的距离.
解法一:(1)连接OC,
∵△ABD和△CBD为等边三角形,O为BD的中点,
∴AO⊥BD,CO⊥BD,又AB=2,AC=
,
∴AO= CO=
.…………………………3分
在△AOC中,∵AO2+ CO2= AC2,
∴∠AOC=90o,即AO⊥OC.
∵BD∩OC=O,∴AO⊥平面BCD.………………4分
(2)过O作OE⊥BC于E,连接AE,∵AO⊥平面BCD,
∴AE在平面BCD上的射影为OE,∴AE⊥BC,
∴∠AEO为二面角A—BC—D的平面角.………………6分
在Rt△AEO中,AO=
,OE=
,
tan∠AEO=
=2,cos∠AEO=
,
∴二面角A—BC—D的余弦值为
.……………………8分
(3)设点O到平面ACD的距离为h.
∵VO—ACD= VA—OCD,∴
S
△ACD·h—=
S△OCD·AO.
在△ACD中,AD= CD=2,AC=
,
S△ACD=![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529194208.gif)
·
.
而AO=
,S△OCD=
,
∴
,
∴点O到平面ACD的距离为
.…………………………12分
解法二:(1)同解法一.……………………………………4分
(2)以O为原点,如图建立空间直角坐标系,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231815293193592.jpg)
则
…………5分
∵AO⊥平面BCD,
∴平面BCD的法向量
=(0,0,
)…………6分
设平面ABC的法向量n=(x,y,z),
=(0,-1,-
),
=(
,1,0).
由![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529475612.gif)
n=(1,-
,1).
设n与
的夹角为
,则|cos
|=
=
,
∴二面角A—BC—D的余弦值为
.…………………………8分
(3)设平面ACD的法向量m=(x,y,z),
又
与m的夹角为
,则|cos
|=
=
. 设点O到平面ACD的距离为h,
∵
h=
,
∴点O到平面ACD的距离为
.…………………………12分
∵△ABD和△CBD为等边三角形,O为BD的中点,
∴AO⊥BD,CO⊥BD,又AB=2,AC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181528976227.gif)
∴AO= CO=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529038217.gif)
在△AOC中,∵AO2+ CO2= AC2,
∴∠AOC=90o,即AO⊥OC.
∵BD∩OC=O,∴AO⊥平面BCD.………………4分
(2)过O作OE⊥BC于E,连接AE,∵AO⊥平面BCD,
∴AE在平面BCD上的射影为OE,∴AE⊥BC,
∴∠AEO为二面角A—BC—D的平面角.………………6分
在Rt△AEO中,AO=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529038217.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529069245.gif)
tan∠AEO=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529085410.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529100245.gif)
∴二面角A—BC—D的余弦值为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529100245.gif)
(3)设点O到平面ACD的距离为h.
∵VO—ACD= VA—OCD,∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529132213.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318152914772.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529132213.gif)
在△ACD中,AD= CD=2,AC=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181528976227.gif)
S△ACD=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529194208.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181528976227.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529225662.gif)
而AO=
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529038217.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529069245.gif)
∴
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529288728.gif)
∴点O到平面ACD的距离为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529303268.gif)
解法二:(1)同解法一.……………………………………4分
(2)以O为原点,如图建立空间直角坐标系,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231815293193592.jpg)
则
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/201408231815293661277.gif)
∵AO⊥平面BCD,
∴平面BCD的法向量
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529381241.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529038217.gif)
设平面ABC的法向量n=(x,y,z),
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529412235.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529038217.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529444236.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529038217.gif)
|
|
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529475612.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529490712.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529038217.gif)
|
|
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529381241.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529553193.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529553193.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529584457.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529100245.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/2014082318152961565.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529100245.gif)
(3)设平面ACD的法向量m=(x,y,z),
|
|
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529646241.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529553193.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529553193.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529584457.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529100245.gif)
∵
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529740502.gif)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529303268.gif)
∴点O到平面ACD的距离为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140823/20140823181529303268.gif)
略
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目