题目内容

12.设F1、F2分别是椭圆$\frac{x^2}{4}$+y2=1的左、右焦点,若Q是该椭圆上的一个动点,则$\overrightarrow{Q{F_1}}$•$\overrightarrow{Q{F_2}}$的最大值和最小值分别为(  )
A.1与-2B.2与-2C.1与-1D.2与-1

分析 椭圆$\frac{x^2}{4}$+y2=1中,a=2,b=1,c=$\sqrt{3}$,设Q(x,y),则$\overrightarrow{Q{F_1}}$•$\overrightarrow{Q{F_2}}$=(-$\sqrt{3}$-x,-y)•($\sqrt{3}$-x,-y)=x2+y2-3,由x∈[-2,2],能求出$\overrightarrow{Q{F_1}}$•$\overrightarrow{Q{F_2}}$的最大值和最小值.

解答 解:椭圆$\frac{x^2}{4}$+y2=1中,a=2,b=1,c=$\sqrt{3}$,
∴F1(-$\sqrt{3}$,0),F2($\sqrt{3}$,0),
设Q(x,y),则$\overrightarrow{Q{F_1}}$•$\overrightarrow{Q{F_2}}$=(-$\sqrt{3}$-x,-y)•($\sqrt{3}$-x,-y)=x2+y2-3,
∵x∈[-2,2],∴当x=0,即点Q为椭圆短轴端点时,$\overrightarrow{Q{F_1}}$•$\overrightarrow{Q{F_2}}$有最小值-2.
当x=±2,即点Q为椭圆长轴端点时,$\overrightarrow{Q{F_1}}$•$\overrightarrow{Q{F_2}}$有最大值1.
故选:A.

点评 本题考查直线与椭圆的位置关系的综合运用,具体涉及到椭圆的简单性质、向量的数量积公式等基本知识点,解题时要认真审题,仔细解答.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网