题目内容
【题目】过正方体ABCD﹣A1B1C1D1的顶点A1在空间作直线l,使l与直线AC和BC1所成的角都等于 ,则这样的直线l共可以作出( )
A.1条
B.2条
C.3条
D.4条
【答案】C
【解析】解:因为AD1∥BC1,所以直线AC和BC1所成的角即为直线AC和AD1所成的角,所以过A1在空间作直线l,使l与直线AC和BC1所成的角都等于 ,即过点A在空间作直线l,使l与直线AC和AD1所成的角都等于 .
因为∠ACD1=60°,∠ACD1的外角平分线与AC和AD1所成的角相等,均为60°,所以在平面ACD1内有一条满足要求.
因为∠ACD1的角平分线与AC和AD1所成的角相等,均为30°,将角平分线绕点A向上转动到与面ACD1垂直的过程中,存在两条直线与直线AC和BC1所成的角都等于 ,故符合条件的直线有3条.
故选C
【考点精析】关于本题考查的空间中直线与直线之间的位置关系,需要了解相交直线:同一平面内,有且只有一个公共点;平行直线:同一平面内,没有公共点;异面直线: 不同在任何一个平面内,没有公共点才能得出正确答案.
练习册系列答案
相关题目
【题目】由于雾霾日趋严重,政府号召市民乘公交出行.但公交车的数量太多会造成资源的浪费,太少又难以满足乘客需求.为此,某市公交公司在某站台的60名候车乘客中进行随机抽样,共抽取10人进行调查反馈,所选乘客情况如下表所示:
组别 | 候车时间(单位:min) | 人数 |
一 | [0,5) | 1 |
二 | [5,10) | 5 |
三 | [10,15) | 3 |
四 | [15,20) | 1 |
(1)估计这60名乘客中候车时间少于10分钟的人数;
(2)现从这10人中随机取3人,求至少有一人来自第二组的概率;
(3)现从这10人中随机抽取3人进行问卷调查,设这3个人共来自X个组,求X的分布列及数学期望.