ÌâÄ¿ÄÚÈÝ
8£®ÔÚƽÃæÖ±½Ç×ø±êϵxOyÖУ¬¶ÔÓÚÖ±Ïßl£ºax+by+c=0ºÍµãP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬ÈôP1P2¡Íl£¬´¹×ãΪP0£¬ÇÒ$\overrightarrow{{P_1}{P_0}}=¦Ë•\;\overrightarrow{{P_0}{P_2}}$£¬Ôò³ÆµãP1£¬P2¹ØÓÚÖ±Ïßl³É¡°¦Ë¶Ô³Æ¡±£®ÈôÇúÏßCÉÏ´æÔÚµãP1£¬P2¹ØÓÚÖ±Ïßl³É¡°¦Ë¶Ô³Æ¡±£¬Ôò³ÆÇúÏßCΪ¡°¦Ë¶Ô³ÆÇúÏß¡±£®£¨1£©ÉèP1£¨0£¬3£©£¬P2£¨3£¬0£©£¬ÈôµãP1£¬P2¹ØÓÚÖ±Ïßl³É¡°$\frac{1}{2}$¶Ô³Æ¡±£¬ÇóÖ±ÏßlµÄ·½³Ì£»
£¨2£©ÉèÖ±Ïßl£ºx-y+1=0£¬ÅжÏË«ÇúÏßx2-y2=1ÊÇ·ñΪ¡°¦Ë¶Ô³ÆÇúÏß¡±£¿Çë˵Ã÷ÀíÓÉ£»
£¨3£©ÉèÖ±Ïßl£ºx+y=0£¬ÇÒÅ×ÎïÏßy=x2-mΪ¡°2¶Ô³ÆÇúÏß¡±£¬ÇóʵÊýmµÄÈ¡Öµ·¶Î§£®
·ÖÎö £¨1£©ÉèP0£¨x0£¬y0£©£¬ÓÉ$\overrightarrow{{P}_{1}{P}_{0}}$=$\frac{1}{2}$$\overrightarrow{{P}_{0}{P}_{2}}$£¬¿ÉµÃx0=1£¬y0=2£¬¼´¿ÉÇóÖ±ÏßlµÄ·½³Ì£»
£¨2£©Ö±Ïßl£ºx-y+1=0ÓëÆäÖн¥½üÏßx-y=0ƽÐУ¬Ë«ÇúÏßx2-y2=1²»ÊÇΪ¡°¦Ë¶Ô³ÆÇúÏß¡±£»
£¨3£©ÉèÖ±ÏßP1P2£ºy=x+t£¬ÓÉ$\left\{{\begin{array}{l}{y=x+t}\\{y={x^2}-m}\end{array}}\right.$⇒x2-x-t-m=0£¬ÓÉ$\overrightarrow{{P}_{1}{P}_{0}}$=2$\overrightarrow{{P}_{0}{P}_{2}}$£¬¿ÉµÃx0=$\frac{{x}_{1}+2{x}_{2}}{3}$£¬y0=$\frac{{y}_{1}+2{y}_{2}}{3}$£¬´úÈëx0+y0=0µÃx1+2x2+y1+2y2=0£¬»¯¼ò£¬¼´¿ÉÇóʵÊýmµÄÈ¡Öµ·¶Î§£®
½â´ð ½â£º£¨1£©ÓÉÌâÒ⣺$\overrightarrow{{P}_{1}{P}_{2}}$=£¨3£¬-3£©¡£¨1·Ö£©
ÉèP0£¨x0£¬y0£©£¬ÓÉ$\overrightarrow{{P}_{1}{P}_{0}}$=$\frac{1}{2}$$\overrightarrow{{P}_{0}{P}_{2}}$£¬
¿ÉµÃ2£¨x0-0£©=3-x0£¬2£¨y0-3£©=0-y0£¬
ËùÒÔx0=1£¬y0=2£¬¡£¨3·Ö£©
ËùÒÔÖ±Ïßl£º3£¨x-1£©-3£¨y-2£©=0£¬
¼´ËùÇóÖ±Ïßl£ºx-y+1=0£» ¡£¨4·Ö£©
£¨2£©Ë«ÇúÏßx2-y2=1²»ÊÇΪ¡°¦Ë¶Ô³ÆÇúÏß¡±¡£¨6·Ö£©
ÊÂʵÉÏ£¬Ë«ÇúÏßx2-y2=1µÄÁ½Ìõ½¥½üÏß·Ö±ðΪx-y=0£¬x+y=0£¬ËüÃÇ»¥Ïà´¹Ö±£¬
Ö±Ïßl£ºx-y+1=0ÓëÆäÖн¥½üÏßx-y=0ƽÐУ¬
ËùÒÔË«ÇúÏßx2-y2=1Éϲ»¿ÉÄÜ´æÔÚÁ½µãP1£¬P2£¬¸ü±ð˵Âú×ã$\overrightarrow{{P_1}{P_0}}=¦Ë•\;\overrightarrow{{P_0}{P_2}}$ ¡£¨8·Ö£©
£¨3£©ÒòΪÅ×ÎïÏßy=x2-mΪ¡°2¶Ô³ÆÇúÏß¡±£¬ËùÒÔ´æÔÚµãP1£¨x1£¬y1£©£¬P2£¨x2£¬y2£©£¬
ÉèÖ±ÏßP1P2£ºy=x+t£¬ÓÉ$\left\{{\begin{array}{l}{y=x+t}\\{y={x^2}-m}\end{array}}\right.$⇒x2-x-t-m=0
ÆäÖС÷=1-4£¨-t-m£©£¾0£¬ÇÒ$\left\{{\begin{array}{l}{{x_1}+{x_2}=1}\\{{x_1}{x_2}=-t-m}\end{array}}\right.$
ÓÖÓÉ$\overrightarrow{{P}_{1}{P}_{0}}$=2$\overrightarrow{{P}_{0}{P}_{2}}$£¬¿ÉµÃx0=$\frac{{x}_{1}+2{x}_{2}}{3}$£¬y0=$\frac{{y}_{1}+2{y}_{2}}{3}$
´úÈëx0+y0=0µÃx1+2x2+y1+2y2=0
ËùÒÔx1+xy2+£¨x1+t£©+2£¨x2+t£©=0$⇒{x_2}=-\frac{3}{2}t-1£¬{x_1}=2+\frac{3}{2}t$¡£¨12·Ö£©
ÓÉ¡÷=1-4£¨-t-m£©=1-4x1x2£¾0µÃ$1-4£¨-\frac{3t}{2}-1£©£¨2+\frac{3t}{2}£©£¾0$⇒t¡Ù-1¡£¨14·Ö£©
ÓÉx1x2=-t-mµÃm=-t-x1x2=$-t-£¨-\frac{3t}{2}-1£©£¨2+\frac{3t}{2}£©$=$\frac{9}{4}{t^2}+\frac{7}{2}t+2$=$\frac{9}{4}{£¨t+\frac{7}{9}£©^2}+\frac{23}{36}$¡Ê[$\frac{23}{36}$£¬+¡Þ£©£®
¼´ËùÇóʵÊýmµÄ·¶Î§Îª[$\frac{23}{36}$£¬+¡Þ£©£®¡£¨16·Ö£©
µãÆÀ ±¾ÌâÖ÷Òª¿¼²éж¨Ò壬ֱÏßµÄÒ»°ãʽ·½³Ì£¬ÇóµãµÄ¹ì¼£·½³Ì£¬ÊôÓÚÖеµÌ⣮
A£® | £¨-¡Þ£¬1£© | B£® | £¨-¡Þ£¬2£© | C£® | [1£¬2£© | D£® | £¨1£¬2£© |
A£® | £¼b£¼a | B£® | c£¼a£¼b | C£® | a£¼c£¼b | D£® | a£¼b£¼c |