题目内容
5.锐角△ABC中,角A,B,C所对的边分别为a,b,c,bcosA+acosB=$\sqrt{3}$R,(R为△ABC外接圆的半径),若c=2,则△ABC面积的最大值为$\sqrt{3}$.分析 已知等式利用正弦定理化简,再利用两角和与差的正弦函数公式及诱导公式变形求出sinC的值,确定出C的度数,利用余弦定理列出关系式,把c,cosC的值代入并利用基本不等式求出ab的最大值,利用三角形面积公式确定出三角形ABC面积的最大值即可.
解答 解:已知等式bcosA+acosB=$\sqrt{3}$R,利用正弦定理化简得:2RsinBcosA+2RsinAcosB=2R(sinAcosB+cosAsinB)=2Rsin(A+B)=2RsinC=$\sqrt{3}$R,
∴sinC=$\frac{\sqrt{3}}{2}$,
∵C为锐角,
∴C=$\frac{π}{3}$,
由余弦定理得:c2=a2+b2-2ab•cocC,即4=a2+b2-ab≥2ab-ab=ab,
∴S△ABC=$\frac{1}{2}$absinC=$\frac{\sqrt{3}}{4}$ab≤$\sqrt{3}$,
则△ABC面积的最大值为$\sqrt{3}$.
故答案为:$\sqrt{3}$.
点评 此题考查了正弦、余弦定理,三角形面积公式,熟练掌握公式及定理是解本题的关键.
练习册系列答案
相关题目
15.已知平面向量$\overrightarrow{a}$与$\overrightarrow{b}$的夹角为120°,$\overrightarrow{a}$=(2,0),|$\overrightarrow{b}$|=1,则|$\overrightarrow{a}$+2$\overrightarrow{b}$|=( )
A. | 2 | B. | 2$\sqrt{3}$ | C. | 4 | D. | 12 |
16.已知奇函数y=f(x)的导函数f′(x)<0在R恒成立,且x,y满足不等式f(x2-2x)+f(y2-2y)≥0,则$\sqrt{{x^2}+{y^2}}$的取值范围是( )
A. | $[0,2\sqrt{2}]$ | B. | $[0,\sqrt{2}]$ | C. | [1,2] | D. | $[\sqrt{2},2\sqrt{2}]$ |
11.若关于x的方程ax-x-a=0有两个解,则实数a的取值范围是( )
A. | (1,+∞) | B. | (0,1) | C. | (0,+∞) | D. | ∅ |