题目内容

对于定义在D上的函数y=f(x),若同时满足:①f(x)在D内单调;②存在区间[a,b]⊆D,使f(x)在区间[a,b]上值域为[a,b],则函数y=f(x)(x∈D)称为闭函数.按照上述定义,若函数y=
2x
为闭函数,则符合条件②的区间[a,b]可以是
[1,2]或[-2,-1]等等(答案不唯一)
[1,2]或[-2,-1]等等(答案不唯一)
分析:由已知条件中“闭函数”的定义,说明函数y=
2
x
在区间[a,b]的值域是[a,b],因为函数在(-∞,0)和(0,∞+)均为减函数所以分a、b都小于0和a、b都大于0两种情况讨论,通过解方程组,即可得到符合条件②的区间[a,b].
解答:解:∵函数y=
2
x
在(-∞,0)和(0,∞+)均为减函数,在[a,b]的值域是[a,b],
∴当[a,b]⊆(0,+∞)时,可得
f(a)=
2
a
=b
f(b)=
2
a
=b
,说明只要满足ab=2,且a<b的正数a、b都能符合题意
同理可得,当[a,b]⊆(-∞,0)时,满足ab=2,且a<b的负数数a、b也能符合题意.
所以任意满足ab=2,且a<b的实数都能符合题意.
故答案为:[1,2]或[-2,-1]等等(答案不唯一)
点评:本题考查的知识点是函数单调性和函数的值域,属于基础题.根据新定义构造出满足条件的方程(组)或不等式(组)将新定义转化为熟悉的数学模型是解答本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网