题目内容
【题目】已知直线经过点,且斜率为.
(I)求直线的方程;
(Ⅱ)若直线与平行,且点P到直线的距离为3,求直线的方程.
【答案】(I)y-5=(x+2);(Ⅱ)3x+4y+1=0或3x+4y-29=0;
【解析】
试题分析:(1)由点斜式写出直线l的方程为y-5=(x+2),化为一般式;
(2)由直线m与直线l平行,可设直线m的方程为3x+4y+c=0,由点到直线的距离公式求得待定系数c 值,即得所求直线方程.
试题解析:(1)由直线方程的点斜式,得
y-5=(x+2), 2分
整理得所求直线方程为
3x+4y-14=0. 4分
(2)由直线m与直线l平行,可设直线m的方程为3x+4y+C=0, 6分
由点到直线的距离公式得
, 8分
即,解得C=1或C=-29, 10分
故所求直线方程为3x+4y+1=0或3x+4y-29=0. 12分
练习册系列答案
相关题目
【题目】某百货公司1~6月份的销售量与利润的统计数据如表:
月份 | 1 | 2 | 3 | 4 | 5 | 6 |
销售量x/万件 | 10 | 11 | 13 | 12 | 8 | 6 |
利润y/万元 | 22 | 25 | 29 | 26 | 16 | 12 |
(1)根据2~5月份的统计数据,求出y关于x的回归直线方程x+;
(2)若由回归直线方程得到的估计数据与剩下的检验数据的误差均不超过2万元,则认为得到的回归直线方程是理想的,试问所得回归直线方程是否理想?