ÌâÄ¿ÄÚÈÝ
£¨2011•ÉϺ£Ä£Ä⣩ÉèµÈ±ÈÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÒÑÖªan+1=2Sn+2(n¡ÊN*)£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÔÚanÓëan+1(n¡ÊN*)Ö®¼ä²åÈën¸ö1£¬¹¹³ÉÈçϵÄÐÂÊýÁУºa1£¬1£¬a2£¬1£¬1£¬a3£¬1£¬1£¬1£¬a4£¬¡£¬ÇóÕâ¸öÊýÁеÄǰ2012ÏîµÄºÍ£»
£¨3£©ÔÚanÓëan+1Ö®¼ä²åÈën¸öÊý£¬Ê¹Õân+2¸öÊý×é³É¹«²îΪdnµÄµÈ²îÊýÁУ¨È磺ÔÚa1Óëa2Ö®¼ä²åÈë1¸öÊý¹¹³ÉµÚÒ»¸öµÈ²îÊýÁУ¬Æä¹«²îΪd1£»ÔÚa2Óëa3Ö®¼ä²åÈë2¸öÊý¹¹³ÉµÚ¶þ¸öµÈ²îÊýÁУ¬Æä¹«²îΪd2£¬¡ÒÔ´ËÀàÍÆ£©£¬ÉèµÚn¸öµÈ²îÊýÁеĺÍÊÇAn£®ÊÇ·ñ´æÔÚÒ»¸ö¹ØÓÚnµÄ¶àÏîʽg£¨n£©£¬Ê¹µÃAn=g£¨n£©dn¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öÕâ¸ö¶àÏîʽ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÔÚanÓëan+1(n¡ÊN*)Ö®¼ä²åÈën¸ö1£¬¹¹³ÉÈçϵÄÐÂÊýÁУºa1£¬1£¬a2£¬1£¬1£¬a3£¬1£¬1£¬1£¬a4£¬¡£¬ÇóÕâ¸öÊýÁеÄǰ2012ÏîµÄºÍ£»
£¨3£©ÔÚanÓëan+1Ö®¼ä²åÈën¸öÊý£¬Ê¹Õân+2¸öÊý×é³É¹«²îΪdnµÄµÈ²îÊýÁУ¨È磺ÔÚa1Óëa2Ö®¼ä²åÈë1¸öÊý¹¹³ÉµÚÒ»¸öµÈ²îÊýÁУ¬Æä¹«²îΪd1£»ÔÚa2Óëa3Ö®¼ä²åÈë2¸öÊý¹¹³ÉµÚ¶þ¸öµÈ²îÊýÁУ¬Æä¹«²îΪd2£¬¡ÒÔ´ËÀàÍÆ£©£¬ÉèµÚn¸öµÈ²îÊýÁеĺÍÊÇAn£®ÊÇ·ñ´æÔÚÒ»¸ö¹ØÓÚnµÄ¶àÏîʽg£¨n£©£¬Ê¹µÃAn=g£¨n£©dn¶ÔÈÎÒân¡ÊN*ºã³ÉÁ¢£¿Èô´æÔÚ£¬Çó³öÕâ¸ö¶àÏîʽ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©Éèan=a1qn-1£¬ÓÉan+1=2Sn+2£¬½¨Á¢·½³Ì×飬Çó³öa1ºÍq£¬Äܹ»ÍƵ¼³öan£®
£¨2£©ÀûÓÃÌâÉèÌõ¼þÖª£ºµ½anΪֹ£¬ÐµÄÊýÁй²ÓÐ1+2+3+¡+n=
ÏÁî
=2012£¬Öª£ºµ½a62Ϊֹ£¬ÐµÄÊýÁй²ÓÐ1953ÏÓÉ´ËÄÜÇó³ö¸ÃÊýÁеÄǰ2012ÏîµÄºÍ£®
£¨3£©ÒÀÌâÒ⣬dn=
=
£¬An=
£¬ÒªÊ¹An=g£¨n£©dn£¬Ôò4£¨n+2£©¡Á3n-1=g£¨n£©¡Á
£¬ÓÉ´ËÄܹ»ÍƵ¼³ö´æÔÚg£¨n£©=n2+3n+2Âú×ãÌõ¼þ£®
£¨2£©ÀûÓÃÌâÉèÌõ¼þÖª£ºµ½anΪֹ£¬ÐµÄÊýÁй²ÓÐ1+2+3+¡+n=
| n(n+1) |
| 2 |
| n(n+1) |
| 2 |
£¨3£©ÒÀÌâÒ⣬dn=
| 2¡Á3n-2¡Á3n-1 |
| n+1 |
| 4¡Á3n-1 |
| n+1 |
| (2¡Á3n+2¡Á3n-1)(n+2) |
| 2 |
| 4¡Á3n-1 |
| n+1 |
½â´ð£º½â£º£¨1£©Éèan=a1qn-1£¬
ÓÉan+1=2Sn+2£¬Öª
£¬
½âµÃ
£¬
¹Êan=2¡Á3n-1¡£¨6·Ö£©
£¨2£©ÒÀÌâÒ⣬µ½anΪֹ£¬ÐµÄÊýÁй²ÓÐ1+2+3+¡+n=
Ï
Áî
=2012£¬
µÃn=
¡Ö62.9£¬
¼´µ½a62Ϊֹ£¬ÐµÄÊýÁй²ÓÐ1+2+3+4+¡+62=
=1953Ï
¹Ê¸ÃÊýÁеÄǰ2012ÏîµÄºÍΪ£º
a1+a2+¡+a62+1+2+3+¡+61+£¨2012-1953£©=
+1950=362+1949£®
£¨3£©ÒÀÌâÒ⣬dn=
=
£¬
An=
=4£¨n+2£©¡Á3n-1£¬
ҪʹAn=g£¨n£©dn£¬
Ôò4£¨n+2£©¡Á3n-1=g£¨n£©¡Á
£¬
¡àg£¨n£©=£¨n+2£©¡Á£¨n+1£©=n2+3n+2£¬
¼´´æÔÚg£¨n£©=n2+3n+2Âú×ãÌõ¼þ£®
ÓÉan+1=2Sn+2£¬Öª
|
½âµÃ
|
¹Êan=2¡Á3n-1¡£¨6·Ö£©
£¨2£©ÒÀÌâÒ⣬µ½anΪֹ£¬ÐµÄÊýÁй²ÓÐ1+2+3+¡+n=
| n(n+1) |
| 2 |
Áî
| n(n+1) |
| 2 |
µÃn=
-1+
| ||
| 2 |
¼´µ½a62Ϊֹ£¬ÐµÄÊýÁй²ÓÐ1+2+3+4+¡+62=
| 62(62+1) |
| 2 |
¹Ê¸ÃÊýÁеÄǰ2012ÏîµÄºÍΪ£º
a1+a2+¡+a62+1+2+3+¡+61+£¨2012-1953£©=
| 2¡Á(1-362) |
| 1-3 |
£¨3£©ÒÀÌâÒ⣬dn=
| 2¡Á3n-2¡Á3n-1 |
| n+1 |
| 4¡Á3n-1 |
| n+1 |
An=
| (2¡Á3n+2¡Á3n-1)(n+2) |
| 2 |
=4£¨n+2£©¡Á3n-1£¬
ҪʹAn=g£¨n£©dn£¬
Ôò4£¨n+2£©¡Á3n-1=g£¨n£©¡Á
| 4¡Á3n-1 |
| n+1 |
¡àg£¨n£©=£¨n+2£©¡Á£¨n+1£©=n2+3n+2£¬
¼´´æÔÚg£¨n£©=n2+3n+2Âú×ãÌõ¼þ£®
µãÆÀ£ºµÚ£¨1£©Ì⿼²éÊýÁеÄͨÏʽµÄÇ󷨣¬½âÌâʱҪעÒâºÏÀíµØ½øÐеȼÛת»¯£»µÚ£¨2£©Ì⿼²éÊýÁеÄǰnÏîºÍµÄ¼ÆËãºÍµÈ±ÈÊýÁеÄ×ÛºÏÔËÓ㬽âÌâʱҪעÒâµÈ±ÈÊýÁк͵ȲîÊýÁÐǰnÏîºÍ¹«Ê½µÄºÏÀíÔËÓ㻵ڣ¨3£©Ì⿼²é¶àÏîʽÊÇ·ñ´æÔÚµÄ̽Ë÷£¬¶ÔÊýѧ˼άµÄÒªÇó½Ï¸ß£¬½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿