题目内容
【题目】如图,射线和均为笔直的公路,扇形区域(含边界)是一蔬菜种植园,其中、分别在射线和上.经测量得,扇形的圆心角(即)为、半径为1千米.为了方便菜农经营,打算在扇形区域外修建一条公路,分别与射线、交于、两点,并要求与扇形弧相切于点.设(单位:弧度),假设所有公路的宽度均忽略不计.
(1)试将公路的长度表示为的函数,并写出的取值范围;
(2)试确定的值,使得公路的长度最小,并求出其最小值.
【答案】⑴,其中,⑵当时,长度的最小值为千米..
【解析】试题分析:
⑴由切线的性质可得OS⊥MN.则SM=,SN=, 据此可得,其中.
⑵ 利用换元法,令,则, 由均值不等式的结论有:,当且仅当即时等号成立,即长度的最小值为千米.
试题解析:
⑴因为MN与扇形弧PQ相切于点S,所以OS⊥MN.
在OSM中,因为OS=1,∠MOS=,所以SM=,
在OSN中,∠NOS=,所以SN=,
所以,
其中.
⑵ 因为,所以,
令,则,
所以,
由基本不等式得,
当且仅当即时取“=”.
此时,由于,故.
答:⑴,其中.
⑵当时,长度的最小值为千米.
【题目】某快餐代卖店代售多种类型的快餐,深受广大消费者喜爱.其中,种类型的快餐每份进价为元,并以每份元的价格销售.如果当天20:00之前卖不完,剩余的该种快餐每份以元的价格作特价处理,且全部售完.
(1)若该代卖店每天定制份种类型快餐,求种类型快餐当天的利润(单位:元)关于当天需求量(单位:份,)的函数解析式;
(2)该代卖店记录了一个月天的种类型快餐日需求量(每天20:00之前销售数量)
日需求量 | ||||||
天数 |
(i)假设代卖店在这一个月内每天定制份种类型快餐,求这一个月种类型快餐的日利润(单位:元)的平均数(精确到);
(ii)若代卖店每天定制份种类型快餐,以天记录的日需求量的频率作为日需求量发生的概率,求种类型快餐当天的利润不少于元的概率.
【题目】某地一商场记录了月份某天当中某商品的销售量(单位:)与该地当日最高气温(单位:)的相关数据,如下表:
(1)试求与的回归方程;
(2)判断与之间是正相关还是负相关;若该地月某日的最高气温是,试用所求回归方程预测这天该商品的销售量;
(3)假定该地月份的日最高气温,其中近似取样本平均数,近似取样本方差,试求.
附:参考公式和有关数据,,,若,则,且.