题目内容
【题目】某纪念章从2018年10月1日起开始上市,通过市场调查,得到该纪念章每1枚的市场价(单位:元)与上市时间(单位:天)的数据如下:
上市时间天 | 4 | 10 | 36 |
市场价元 | 90 | 51 | 90 |
(1)根据上表数据,从下列函数中选取一个恰当的函数描述该纪念章的市场价与上市时间的变化关系并说明理由:①;②;③.
(2)利用你选取的函数,求该纪念章市场价最低时的上市天数及最低的价格.
【答案】(1)选择.理由见解析;(2)当纪念章上市20天时,该纪念章的市场价最低,最低市场价为26元
【解析】
(1)随着时间的增加,的值先减后增,结合函数的单调性即可得到结论;
(2)把点,,代入中,求出函数解析式,利用配方法,即可求出该纪念章市场价最低时的上市天数及最低的价格
(1)随着时间的增加,的值先减后增,而所给的三个函数中和显然都是单调函数,不满足题意,
选择.
(2)把点,,代入中,
得
解得,,.
,
当时,有最小值.
故当纪念章上市20天时,该纪念章的市场价最低,最低市场价为26元
【题目】德化瓷器是泉州的一张名片,已知瓷器产品的质量采用综合指标值进行衡量,为一等品;为二等品;为三等品.某瓷器厂准备购进新型窑炉以提高生产效益,在某供应商提供的窑炉中任选一个试用,烧制了一批产品并统计相关数据,得到下面的频率分布直方图:
(1)估计该新型窑炉烧制的产品为二等品的概率;
(2)根据陶瓷厂的记录,产品各等次的销售率(某等次产品销量与其对应产量的比值)及单件售价情况如下:
一等品 | 二等品 | 三等品 | |
销售率 | |||
单件售价 | 元 | 元 | 元 |
根据以往的销售方案,未售出的产品统一按原售价的全部处理完.已知该瓷器厂认购该窑炉的前提条件是,该窑炉烧制的产品同时满足下列两个条件:
①综合指标值的平均数(同一组中的数据用该组区间的中点值作代表)不小于;
②单件平均利润值不低于元.
若该新型窑炉烧制产品的成本为元/件,月产量为件,在销售方案不变的情况下,根据以上图表数据,分析该新型窑炉是否达到瓷器厂的认购条件.