题目内容
(理科)设函数f(x)=lnx-x+1,
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求证:lnx≤x-1;
(Ⅲ)证明:
+
+…+
<
(n∈N+,n≥2).
(Ⅰ)求f(x)的单调区间;
(Ⅱ)求证:lnx≤x-1;
(Ⅲ)证明:
ln22 |
22 |
ln32 |
32 |
lnn2 |
n2 |
2n2-n-1 |
2(n+1) |
分析:(Ⅰ)由导数f'(x)>0求得x的范围,即为函数的增区间,同理,由导数f'(x)<0求得x的范围,即为函数的减区间.
(Ⅱ)由(Ⅰ)知:当x=1时,f(x)max=-1+1=0.故对任意x>0,有f(x)≤0,由此化简可得要证的不等式.
(Ⅲ)由(Ⅱ)知,当x≥2时,则
≤1-
,
≤1-
(n≥2且n∈N+),故不等式的左边小于(n-1)-(
+
+…+
),再由
>
=
-
,可得
+
+…+
>(
-
)+(
-
)+…+(
-
)=
-
,从而证得不等式成立.
(Ⅱ)由(Ⅰ)知:当x=1时,f(x)max=-1+1=0.故对任意x>0,有f(x)≤0,由此化简可得要证的不等式.
(Ⅲ)由(Ⅱ)知,当x≥2时,则
lnx |
x |
1 |
x |
lnn2 |
n2 |
1 |
n2 |
1 |
22 |
1 |
32 |
1 |
n2 |
1 |
n2 |
1 |
n(n+1) |
1 |
n |
1 |
n-1 |
1 |
22 |
1 |
32 |
1 |
n2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n |
1 |
n+1 |
1 |
2 |
1 |
n+1 |
解答:解:(Ⅰ)由已知得x>0,f′(x)=
-1,由f'(x)>0,得
-1<0,
<1,x>1.
∴f(x)在(1,+∞)上为减函数,在(0,1)为增函数.…(4分)
(Ⅱ)由(Ⅰ)知:当x=1时,f(x)max=-1+1=0.
对任意x>0,有f(x)≤0,即lnx-x+1≤0. 即lnx≤x-1.…(8分)
(Ⅲ)由(Ⅱ)知,
≤1-
,当x≥2时,则
≤1-
,
∴
≤1-
(n≥2且n∈N+),∴
+
+…+
<(1-
)+(1-
)+…+(1-
)=(n-1)-(
+
+…+
)
又
>
=
-
,
∴
+
+…+
>(
-
)+(
-
)+…+(
-
)=
-
故不等式的左边小于n-1-
+
=n-
+
=
,故要证的不等式成立.…(14分)
1 |
x |
1 |
x |
1 |
x |
∴f(x)在(1,+∞)上为减函数,在(0,1)为增函数.…(4分)
(Ⅱ)由(Ⅰ)知:当x=1时,f(x)max=-1+1=0.
对任意x>0,有f(x)≤0,即lnx-x+1≤0. 即lnx≤x-1.…(8分)
(Ⅲ)由(Ⅱ)知,
lnx |
x |
1 |
x |
lnx |
x |
1 |
x |
∴
lnn2 |
n2 |
1 |
n2 |
ln22 |
22 |
ln32 |
32 |
lnn2 |
n2 |
1 |
22 |
1 |
32 |
1 |
n2 |
1 |
22 |
1 |
32 |
1 |
n2 |
又
1 |
n2 |
1 |
n(n+1) |
1 |
n |
1 |
n-1 |
∴
1 |
22 |
1 |
32 |
1 |
n2 |
1 |
2 |
1 |
3 |
1 |
3 |
1 |
4 |
1 |
n |
1 |
n+1 |
1 |
2 |
1 |
n+1 |
故不等式的左边小于n-1-
1 |
2 |
1 |
n+1 |
3 |
2 |
1 |
n+1 |
2n2-n-1 |
2(n+1) |
点评:本题主要考查利用导数研究函数的单调性,用放缩法证明不等式,体现了转化的数学思想,其中,用放缩法证明不等式,是解题的难点.
练习册系列答案
相关题目