题目内容

【题目】已知{an}是等比数列,前n项和为Sn(n∈N*),且 = ,S6=63.
(1)求{an}的通项公式;
(2)若对任意的n∈N* , bn是log2an和log2an+1的等差中项,求数列{(﹣1)n bn2}的前2n项和.

【答案】
(1)

解:设{an}的公比为q,则 = ,即1﹣ =

解得q=2或q=﹣1.

若q=﹣1,则S6=0,与S6=63矛盾,不符和题意.∴q=2,

∴S6= =63,∴a1=1.

∴an=2n1


(2)

解:∵bn是log2an和log2an+1的等差中项,

∴bn= (log2an+log2an+1)= (log22n1+log22n)=n﹣

∴bn+1﹣bn=1.

∴{bn}是以 为首项,以1为公差的等差数列.

设{(﹣1)nbn2}的前n项和为Tn,则

Tn=(﹣b12+b22)+(﹣b32+b42)+…+(﹣b2n12+b2n2)=b1+b2+b3+b4…+b2n1+b2n= = =2n2


【解析】(1)根据等比数列的通项公式列方程解出公比q,利用求和公式解出a1 , 得出通项公式;
(2)利用对数的运算性质求出bn , 使用分项求和法和平方差公式计算.
本题考查了等差数列,等比数列的性质,分项求和的应用,属于中档题.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网