题目内容
抛物线的焦点坐标为( )
A. | B. | C. | D. |
B
解析试题分析:根据抛物线的标准方程,再利用抛物线 x2="2p" y 的焦点坐标为(0, ),求出物线y=x2的焦点坐标:∵在抛物线y=x2,即 x2=y,∴p==,∴焦点坐标是 (0, ),故答案为:(0, ),故选B
考点:本试题主要考查了抛物线的几何性质的运用。
点评:解决该试题的关键是将根据抛物线的四种标准形式,确定出2p的值,然后结合抛物线的性质得到结论。
练习册系列答案
相关题目
以椭圆的焦点为顶点、顶点为焦点的的双曲线方程是
A. | B. |
C. | D. |
设是椭圆的左、右焦点,为直线上一点,是底角为的等腰三角形,则的离心率为 ( )
A. | B. | C. | D. |
已知点在椭圆上,则的最大值为( )
A. | B.-1 | C.2 | D.7 |
抛物线的焦点到准线的距离为( )
A.1 | B. | C. | D. |
连接抛物线的焦点与点所得的线段与抛物线交于点,设点为坐标原点,则三角形的面积为( )
A. | B. | C. | D. |
设双曲线的一条渐近线与抛物线只有一个公共点,则双曲线的离心率为
A. | B. | C. | D. |