题目内容

函数f(x)=
ax+b
x2+1
是定义在(-∞,+∞)上的奇函数,且f(
1
2
)=
2
5

(1)求实数a,b,并确定函数f(x)的解析式;
(2)用定义证明f(x)在(-1,1)上是增函数;
(3)写出f(x)的单调减区间,并判断f(x)有无最大值或最小值?如有,写出最大值或最小值.(不需说明理由)
分析:(1)根据奇函数的定义以及f(
1
2
)=
2
5
,求出b和a的值,解开得到f(x)的解析式.
(2)利用函数的单调性的定义证明f(x)在(-1,1)上是增函数.
(3)单调减区间(-∞,-1],[1,+∞),当x=-1时有最小值,当x=1时有最大值.
解答:解:(1)∵f(x)是奇函数,∴f(-x)=f(x),即
ax+b
x2+1
=-
-ax+b
x2+1
,∴b=0.  …(2分)
∵f(
1
2
)=
2
5
,∴a=1.
∴f(x)=
x
x2+1
. …(5分)
(2)任取-1<x1<x2<1,f(x1)-f(x2)=
x1
x12+1
-
x2
x22+1

=
(x1-x2)(1-x1x2)
(x12+1)(x22+1)
.  …(7分)
∵-1<x1<x2<1,∴x1-x2<0,1-x1•x2>0,故 
(x1-x2)(1-x1x2)
(x12+1)(x22+1)
<0,
故有f(x1)-f(x2)<0,f(x1)<f(x2),
∴f(x)在(-1,1)上是增函数. …(10分)
(3)单调减区间(-∞,-1],[1,+∞),…(12分)
当x=-1时有最小值-
1
2
,当x=1时有最大值
1
2
. …(14分)
点评:本题主要考查函数的单调性的判断和证明,用待定系数法求函数的解析式,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网