题目内容

已知函数f(x)=
ax,(x<0)
(a-3)x+4a,(x≥0)
满足对任意的实数x1≠x2都有
f(x1)-f(x2)
x1-x2
<0
成立,则实数a的取值范围是(  )
分析:由题意可知,0<a<1,且a-3<0,且4a≤1,解之即得答案.
解答:解:∵f(x)=
ax(x<0)
(a-3)x+4a(x≥0)
,对任意的实数x1≠x2都有
f(x1)-f(x2)
x1-x2
<0
成立,
∴函数f(x)在定义域内单调递减,令g(x)=ax,依题意,f(0)≤g(0),即4a≤1,
0<a<1
a-3<0
4a≤1
,解得0<a≤
1
4

∴实数a的取值范围是0<a≤
1
4

故选C.
点评:本题考查函数单调性的性质及其应用,理解“对任意的实数x1≠x2都有
f(x1)-f(x2)
x1-x2
<0
成立?函数f(x)在定义域内单调递减”是关键,也是难点所在,考查解不等式组的能力,属于中档题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网