题目内容
设函数
.
(1)若
在其定义域内为单调递增函数,求实数
的取值范围;
(2)设
,且
,若在
上至少存在一点
,使得
成立,求实数
的取值范围.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551470894.png)
(1)若
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551470447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551485313.png)
(2)设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551516660.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551532429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551548342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551563324.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551579650.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551485313.png)
(1)
;(2)
.
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551610474.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551610732.png)
试题分析:本题综合考查函数与导数及运用导数求单调区间、最值等数学知识和方法,考查函数思想、综合运用数学知识和方法分析问题解决问题的能力.第一问,属于恒成立问题,通过导数将单调性问题转化为求函数最值的问题,根据基本不等式求最值;第二问,属于存在性问题,构造函数转化为求函数最值问题,用导数判断函数的单调性求最值.
试题解析:(1)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240225516411159.png)
依题意,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551657554.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551672535.png)
只需
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551688685.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551672535.png)
只需
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551719679.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551672535.png)
只需
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551750931.png)
故
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551470447.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551485313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551610474.png)
(2)依题意,
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551813682.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551548342.png)
设
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240225518441307.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551844485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240225518601463.png)
因为
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551844485.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551532429.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551906586.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551548342.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551938484.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551548342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/201408240225519691153.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551984568.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551548342.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022552000699.png)
所以
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022552031752.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022552047647.png)
故所求
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551485313.png)
![](http://thumb.zyjl.cn/pic2/upload/papers/20140824/20140824022551610732.png)
![](http://thumb.zyjl.cn/images/loading.gif)
练习册系列答案
相关题目