题目内容

(2012•武汉模拟)已知椭圆Γ:
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
2
3
,半焦距为c(c>0),且a-c=1.经过椭圆的左焦点F,斜率为k1(k1≠0)的直线与椭圆交于A,B两点,O为坐标原点.
(Ⅰ)求椭圆Γ的标准方程;
(Ⅱ)当k1=1时,求S△AOB的值;
(Ⅲ)设R(1,0),延长AR,BR分别与椭圆交于C,D两点,直线CD的斜率为k2,求证:
k1
k2
为定值.
分析:(Ⅰ)由题意,得
c
a
=
2
3
a-c=1
,解得
a=3
c=2
,由此能求出椭圆Γ的方程.
(Ⅱ)由(Ⅰ),知F(-2,0),故直线AB的方程为y=x+2,由
y=x+2
x2
9
+
y2
5
=1
,得14x2+36x-9=0.设A(x1,y1),B(x2,y2),则x1+x2=-
18
7
,x1x2=-
9
14
,由此能求出S△AOB
(Ⅲ)设C(x3,y3),D(x4,y4),由直线AR的方程为y=
y1
x1-1
(x-1),由
x=
x1-1
y1
y+1
x2
9
+
y2
5
=1
,得
5-x1
y12
y2+
x1-1
y1
y-4=0.由此能
k1
k2
为定值.
解答:解:(Ⅰ)由题意,得
c
a
=
2
3
a-c=1
解得
a=3
c=2

∴b2=a2-c2=5,
故椭圆Γ的方程为
x2
9
+
y2
5
=1.…(4分)
(Ⅱ)由(Ⅰ),知F(-2,0),∴直线AB的方程为y=x+2,
y=x+2
x2
9
+
y2
5
=1
消去y并整理,得14x2+36x-9=0.
设A(x1,y1),B(x2,y2),则x1+x2=-
18
7
,x1x2=-
9
14

∴|AB|=
2
|x1-x2|=
2
(x1+x2)2-4x1x2
=
30
7

设O点到直线AB的距离为d,则d=
|0-0+2|
2
=
2

∴S△AOB=
1
2
|AB|•d=
1
2
×
30
7
×
2
=
15
2
7
.…(8分)
(Ⅲ)设C(x3,y3),D(x4,y4),
由已知,直线AR的方程为y=
y1
x1-1
(x-1),即x=
x1-1
y1
y+1.
x=
x1-1
y1
y+1
x2
9
+
y2
5
=1
消去x并整理,得
5-x1
y12
y2+
x1-1
y1
y-4=0.
则y1y3=-
y12
5-x1
,∵y1≠0,∴y3=
4y1
x1-5

∴x3=
x1-1
y1
y3+1=
x1-1
y1
4y1
x1-5
+1=
5x1-9
x1-5

∴C(
5x1-9
x1-5
4y1
x1-5
).同理D(
5x2-9
x2-5
4y2
x2-5
).
∴k2=
4y1
x1-5
-
4y2
x2-5
5x1-9
x1-5
-
5x2-9
x2-5
=
4y1(x2-5)-4y2(x1-5)
(5x1-9)(x2-5)-(5x2-9)(x1-5)

=
4y1(x2-5)-4y2 (x1-5)
16(x2-x1)

∵y1=k1(x1+2),y2=k1(x2+2),
∴k2=
4k1(x1+2)(x2-5)-4k1(x2+2)(x1-5)
16(x2-x1)
=
7k1(x2-x1)
4(x2-x1)
=
7k1
4

k
k2
=
4
7
为定值.…(14分)
点评:本题考查椭圆标准方程,简单几何性质,直线与椭圆的位置关系等基础知识.考查运算求解能力,推理论证能力;考查函数与方程思想,化归与转化思想.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网