题目内容
(2011•黄冈模拟)设数列{an}的前n项和为Sn,且Sn=(m+1)-man对任意正整数n都成立,其中m为常数,m<-1
(1)求证:{an(2)}是等比数列;
(3)设数列{an(4)}的公比q=f(m)(5),数列{bn}(6)满足:b1=
a1(7),bn=f(bn-1)(8)(n≥2,n∈N)(9),求数列{bnbn+1}(10)的前n(11)项和Tn(12)
(1)求证:{an(2)}是等比数列;
(3)设数列{an(4)}的公比q=f(m)(5),数列{bn}(6)满足:b1=
1 | 3 |
分析:(1)由已知得:an+1=man-man+1,即(m+1)an+1=man对任意n∈N*都成立.所以
=
,由此知数列{an}等比数列.
(2)因为a1=1,从而 b1=
,所以 bn=f(bn-1)=
(n≥2,n∈N*),
=1+
,即
-
=1.
=3+(n-1)=n+2,bn=
(n∈N*),由此入手能求出Tn.
an+1 |
an |
m |
m+1 |
(2)因为a1=1,从而 b1=
1 |
3 |
bn-1 |
bn-1+1 |
1 |
bn |
1 |
bn-1 |
1 |
bn |
1 |
bn-1 |
1 |
bn |
1 |
n+2 |
解答:解:(1)由已知Sn+1=(m+1)-man+1(1)Sn=(m+1)-man(2)
由(1)-(2)得:an+1=man-man+1,
即(m+1)an+1=man对任意n∈N*都成立.∵m为常数,且m<-1.
又∵a1=1≠0∴
=
,即数列{an}等比数列(5分)
(2)当n=1时,a1=(m+1)-ma1,
∴a1=1,从而 b1=
,由(1)得,
∴bn=f(bn-1)=
(n≥2,n∈N*)
∴
=1+
,即
-
=1.
∴{
}为等差数列,
=3+(n-1)=n+2,bn=
(n∈N*),
bn•bn+1=
=
-
,
Tn=b1b2+b2b3+b3b4+…+bnbn+1
=
-
+
-
+
-
+…+
-
=
-
.
由(1)-(2)得:an+1=man-man+1,
即(m+1)an+1=man对任意n∈N*都成立.∵m为常数,且m<-1.
又∵a1=1≠0∴
an+1 |
an |
m |
m+1 |
(2)当n=1时,a1=(m+1)-ma1,
∴a1=1,从而 b1=
1 |
3 |
∴bn=f(bn-1)=
bn-1 |
bn-1+1 |
∴
1 |
bn |
1 |
bn-1 |
1 |
bn |
1 |
bn-1 |
∴{
1 |
bn |
1 |
bn |
1 |
n+2 |
bn•bn+1=
1 |
(n+2)(n+3) |
1 |
n+2 |
1 |
n+3 |
Tn=b1b2+b2b3+b3b4+…+bnbn+1
=
1 |
3 |
1 |
4 |
1 |
4 |
1 |
5 |
1 |
5 |
1 |
6 |
1 |
n+2 |
1 |
n+3 |
=
1 |
3 |
1 |
n+3 |
点评:本题考查等差数列的证明和数列前n项和的求法,解题时要认真审题,仔细解答,注意递推公式的灵活运用.
练习册系列答案
相关题目