题目内容
(2011•黄冈模拟)已知{an}是正数组成的数列,a1=1,且点(
,an+1)(n∈N*)在函数y=x2+1的图象上.数列{bn}满足b1=0,bn+1=bn+3an(n∈N*).
(I)求数列{an},{bn}的通项公式;
(II)若cn=anbncosnπ(n∈N*),求数列{cn}的前n项和Sn.
an |
(I)求数列{an},{bn}的通项公式;
(II)若cn=anbncosnπ(n∈N*),求数列{cn}的前n项和Sn.
分析:(Ⅰ)由题设条件知an+1=an+1,根据等差数列的定义:{an}是首项为1,公差为1的等差数列,从而an=n,根据bn+1=bn+3an(n∈N*),可得bn+1-bn=3n(n∈N*).累加可求和,从而得{bn}的通项公式;
(II)根据cn=anbncosnπ(n∈N*),可得cn=
,再分n为偶数,奇数分别求和即可
(II)根据cn=anbncosnπ(n∈N*),可得cn=
|
解答:解:(Ⅰ)因为点(
,an+1)(n∈N*)在函数y=x2+1的图象上
所以an+1=an+1
根据等差数列的定义:{an}是首项为1,公差为1的等差数列
所以an=n
∵bn+1=bn+3an(n∈N*).
∴bn+1-bn=3n(n∈N*).
∴bn=3+32+…+3n-1=
×3n-
(II)∵cn=anbncosnπ(n∈N*),
∴cn=
当n为偶数时,Sn=(-3+2•32+…+n•3n)+3[1-2+3-4+…+(n-1)-n]
设Tn=(-3+2•32+…+n•3n),则3Tn=-32+2•33+…+n•3n+1
∴Tn=
[-3+(4n+1)•3n+1]
∴Sn=
当n为奇数时,Sn=Sn-1+cn=
∴Sn=
an |
所以an+1=an+1
根据等差数列的定义:{an}是首项为1,公差为1的等差数列
所以an=n
∵bn+1=bn+3an(n∈N*).
∴bn+1-bn=3n(n∈N*).
∴bn=3+32+…+3n-1=
1 |
2 |
3 |
2 |
(II)∵cn=anbncosnπ(n∈N*),
∴cn=
|
当n为偶数时,Sn=(-3+2•32+…+n•3n)+3[1-2+3-4+…+(n-1)-n]
设Tn=(-3+2•32+…+n•3n),则3Tn=-32+2•33+…+n•3n+1
∴Tn=
1 |
16 |
∴Sn=
(4n+1)•3n+1+24n+21 |
16 |
当n为奇数时,Sn=Sn-1+cn=
-(4n+1)•3n+1+24n+21 |
16 |
∴Sn=
|
点评:本题以函数为载体,考查数列的概念和性质及其应用,,考查错位相减法求和,解题时要注意公式的灵活运用.
练习册系列答案
相关题目