题目内容
已知二次函数满足以下两个条件:
①不等式的解集是(-2,0) ②函数在上的最小值是3
(Ⅰ)求的解析式;
(Ⅱ)若点在函数的图象上,且
(ⅰ)求证:数列为等比数列
(ⅱ)令,是否存在整数使得数列取到最小值?若有,请求出的值;没有,请说明理由。
【答案】
解:(Ⅰ)∵ f(x)< 0 的解集为(-2,0),且f(x)是二次函数
∴ 可设 f(x)= a x(x + 2) (a > 0),故 f(x)的对称轴为直线 ,
∴ f(x)在 [1,2]上的最小值为f(1)=3a =3 ,
∴ a = 1 ,所以f(x)= x 2 + 2 x .
(Ⅱ)(ⅰ)∵ 点(a n , a n + 1 )在函数f(x)= x 2 + 2 x 的图象上
∴ a n + 1 = a n 2 + 2 a n , 则 1 + a n + 1 = 1 + a n 2 + 2 a n = (1 + a n)2
∴ , 又首项
∴ 数列 为等比数列,且公比为2 。
(ⅱ)由上题可知,,
时,有, 时,有
故只须比较与,而,所以当时,数列取到最小值。
练习册系列答案
相关题目