题目内容
【题目】已知函数为定义在上的偶函数,当时,.
(1)当时,求函数的单调区间;
(2)若函数有两个零点:求实数的取值范围.
【答案】(1)的单调递减区间为,,单调递增区间为;(2)或
【解析】
根据题意求出函数在上的单调区间,再利用偶函数在对称区间上单调性相反求出函数在区间上的单调区间即可;
由函数为定义在上的偶函数,只需方程在上有一个根即可,分三种情况,,分别求出时,函数的解析式,利用函数的单调性求出其值域,进而求出实数的取值范围即可.
(1)由题意可得,当,时,,
令,即,解得,
当时,,所以,
因为函数 在上单调递减,
所以函数在上单调递减;
当时,,所以,
因为函数 在上单调递减,
所以函数在上单调递增,
所以函数在上单调递增;
因为函数为定义在上的偶函数,
由偶函数在对称区间上单调性相反可得,
函数在上单调递增,在上单调递减,
故函数单调递减区间为,,单调递增区间为.
(2)由题可得,函数有两个零点,
即方程有两个不同根,
因为为定义在上的偶函数,其图象关于轴对称,
故方程在上有一个根即可.
当时,则,因为,
所以当时,,
所以在上有一个根,
由于在上单调递减,,
所以,即,
故实数的取值范围为;
当时,令,解得,
因为函数为上的减函数,
所以当时,,
所以函数为上的减函数,
所以,
当时,,
所以函数为上的增函数,
所以,
要使方程在上有一个根,
只需或,解得或,
故实数的取值范围为或;
当,时,因为,所以,
所以函数,
因为函数在上单调递减,
所以函数在上单调递增,
因为,所以,
即,
故只需,即,
故实数的取值范围为.
综上可得,实数的取值范围为或.
【题目】武汉有“九省通衢”之称,也称为“江城”,是国家历史文化名城.其中著名的景点有黄鹤楼、户部巷、东湖风景区等等.
(1)为了解“五·一”劳动节当日江城某旅游景点游客年龄的分布情况,从年龄在22岁到52岁的游客中随机抽取了1000人,制成了如图的频率分布直方图:
现从年龄在内的游客中,采用分层抽样的方法抽取10人,再从抽取的10人中随机抽取4人,记4人中年龄在内的人数为,求;
(2)为了给游客提供更舒适的旅游体验,该旅游景点游船中心计划在2020年劳动节当日投入至少1艘至多3艘型游船供游客乘坐观光.由2010到2019这10年间的数据资料显示每年劳动节当日客流量(单位:万人)都大于1.将每年劳动节当日客流量数据分成3个区间整理得表:
劳动节当日客流量 | |||
频数(年) | 2 | 4 | 4 |
以这10年的数据资料记录的3个区间客流量的频率作为每年客流量在该区间段发生的概率,且每年劳动节当日客流量相互独立.
该游船中心希望投入的型游船尽可能被充分利用,但每年劳动节当日型游船最多使用量(单位:艘)要受当日客流量(单位:万人)的影响,其关联关系如下表:
劳动节当日客流量 | |||
型游船最多使用量 | 1 | 2 | 3 |
若某艘型游船在劳动节当日被投入且被使用,则游船中心当日可获得利润3万元;若某艘型游船劳动节当日被投入却不被使用,则游船中心当日亏损0.5万元.记(单位:万元)表示该游船中心在劳动节当日获得的总利润,的数学期望越大游船中心在劳动节当日获得的总利润越大,问该游船中心在2020年劳动节当日应投入多少艘型游船才能使其当日获得的总利润最大?