题目内容

3.如图,过点P作圆O的割线PBA与切线PE,E为切点,连接AE,BE,∠APE的平分线分别与AE、BE相交于C、D,若∠AEB=30°,则∠PCE等于(  )
A.150°B.75°C.105°D.60°

分析 利用PE是圆的切线,可得∠PEB=∠PAC,利用AE是∠APE的平分线,可得∠EPC=∠APC,根据三角形的外角与内角关系,可得∠EDC=∠ECD,即可得出结论.

解答 解:如图,PE是圆的切线,∴∠PEB=∠PAC,
∵AE是∠APE的平分线,∴∠EPC=∠APC,
根据三角形的外角与内角关系有:∠EDC=∠PEB+∠EPC;∠ECD=∠PAC+∠APC,
∴∠EDC=∠ECD,∴△EDC为等腰三角形,
又∠AEB=30°,∴∠EDC=∠ECD=75°,即∠PCE=75°,
故选:B.

点评 本题考查圆的切线的性质,考查等腰三角形的性质,比较基础.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网