题目内容

(本小题12分)设函数f(x)=a·b,其中a=(2cosx,1), b=(cosx,sin2x), x∈R.
(1)若f(x)=1-,且x∈[,],求x
(2)若函数y=2sin2x的图象按向量c=(m,n)(|m|<)平移后得到函数y= f(x)的图象,求实数mn的值.
(1) f(x)=a·b=1+2sin(2x+),由1+2sin(2x+)=1-,得sin(2x+)=-
x∈[,],∴≤2x+.∴2x+=,即x=.
(2)函数y=2sin2x的图象按向量c=(m,n) 平移后得到函数y=2sin2(x-m)+n的图象,即函数y= f(x)的图象.由(1)得f(x)= 2sin2(x+)+ 1, ∵|m|<,∴m= -,n=1.
略       
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网