题目内容
【题目】如图,设椭圆的中心为原点,长轴在轴上,上顶点为,左、右焦点分别为,线段的中点分别为,且是面积为的直角三角形.
(1)求该椭圆的离心率和标准方程;
(2)过作直线交椭圆于两点,使,求的面积.
【答案】(1);(2)
【解析】试题分析:(1)设椭圆的方程为,F2(c,0),利用△AB1B2是的直角三角形,|AB1|=AB2|,可得∠B1AB2为直角,从而,利用c2=a2﹣b2,可求得离心率,又=4,故可求椭圆标准方程;
(2)由(Ⅰ)知B1(﹣2,0),B2(2,0),由题意,直线PQ的倾斜角不为0,故可设直线PQ的方程为x=my﹣2,代入椭圆方程,消元可得(m2+5)y2﹣4my﹣16﹣0,利用韦达定理及PB2⊥QB2,利用可求m的值,进而可求△PB2Q的面积.
试题解析:
(1)设椭圆的方程为, ,∵是面积为的直角三角形, ,∴为直角,从而,得,∵
,在中, ,∴,∵ ,∴椭圆标准方程为.
(2)由(1)知,由题意,直线的倾斜角不为,故可设直线的方程为,代入椭圆方程,消元可得,①
设,
∵,
∴,∵,∴,∴,当时,①可化为,
∴,
∴的面积.
【题目】某保险公司利用简单随机抽样方法,对投保车辆进行抽样,样本车辆中每辆车的赔付结果统计如下:
赔付金额(元) | 0 | 1 000 | 2 000 | 3 000 | 4 000 |
车辆数(辆) | 500 | 130 | 100 | 150 | 120 |
(1)若每辆车的投保金额均为2800元,估计赔付金额大于投保金额的概率.
(2)在样本车辆中,车主是新司机的占10%,在赔付金额为4000元的样本车辆中,车主是新司机的占20%,估计在已投保车辆中,新司机获赔金额为4000元的概率.
【题目】为了摸清整个江门大道的交通状况,工作人员随机选取20处路段,在给定的测试时间内记录到机动车的通行数量情况如下(单位:辆): 147 161 170 180 163 172 178 167 191 182
181 173 174 165 158 154 159 189 168 169
(Ⅰ)完成如下频数分布表,并作频率分布直方图;
通行数量区间 | [145,155) | [155,165) | [165,175) | [175,185) | [185,195) |
频数 |
(Ⅱ)现用分层抽样的方法从通行数量区间为[165,175)、[175,185)及[185,195)的路段中取出7处加以优化,再从这7处中随机选2处安装智能交通信号灯,设所取出的7处中,通行数量区间为[165,175)路段安装智能交通信号灯的数量为随机变量X(单位:盏),试求随机变量X的分布列与数学期望E(X).