题目内容
《孙子算经》是我国古代内容极其丰富的数学名著,书中有如下问题:“今有圆窖,周五丈四尺,深一丈八尺,问受粟几何?”其意思为:“有圆柱形容器,底面圆周长五丈四尺,高一丈八尺,求此容器能装多少斛米.”则该圆柱形容器能装米__________斛.(古制1丈=10尺,1斛=1.62立方尺,圆周率)
中石化集团获得了某地深海油田区块的开采权,集团在该地区随机初步勘探了部分儿口井,取得了地质资料.进入全面勘探时期后,集团按网络点来布置井位进行全面勘探. 由于勘探一口井的费用很高,如果新设计的井位与原有井位重合或接近,便利用旧井的地质资料,不必打这口新井,以节约勘探费用.勘探初期数据资料见如表:
(Ⅰ)1~6号旧井位置线性分布,借助前5组数据求得回归直线方程为,求,并估计的预报值;
(Ⅱ)现准备勘探新井,若通过1、3、5、7号井计算出的的值(精确到0.01)相比于(Ⅰ)中的值之差不超过10%,则使用位置最接近的已有旧井,否则在新位置打开,请判断可否使用旧井?
(参考公式和计算结果:)
(Ⅲ)设出油量与勘探深度的比值不低于20的勘探并称为优质井,那么在原有井号1~6的出油量不低于50L的井中任意勘探3口井,求恰好2口是优质井的概率.
已知椭圆:经过点,离心率为,点为椭圆的右顶点,直线与椭圆相交于不同于点的两个点.
(Ⅰ)求椭圆的标准方程;
(Ⅱ)当时,求面积的最大值;
(Ⅲ)若,求证:为定值.
在区间上随机地取一个数,则事件“”发生的概率为 ( ).
A. B. C. D.
已知圆: 过椭圆: ()的短轴端点, , 分别是圆与椭圆上任意两点,且线段长度的最大值为3.
(Ⅰ)求椭圆的方程;
(Ⅱ)过点作圆的一条切线交椭圆于, 两点,求的面积的最大值.
已知为矩形所在平面内一点,,,,,则( )
A. B. 或 C. D.
若,则( )
将函数的图象向右平移个单位后得到函数的图象,若函数在区间和上均单调递增,则实数的取值范围是 ( )
已知直线:()被圆所截的弦长是圆心到直线的距离的2倍,则等于( )
A. 6 B. 8 C. 9 D. 11