ÌâÄ¿ÄÚÈÝ
Èçͼ£¬ÒÑÖªÍÖÔ²E£ºx2 |
a2 |
y2 |
b2 |
2 |
2 |
£¨1£©ÇóÍÖÔ²EÓëË«ÇúÏßGµÄ·½³Ì£»
£¨2£©ÉèÖ±ÏßPF1¡¢PF2µÄбÂÊ·Ö±ðΪk1ºÍk2£¬Ì½Çók1ºÍk2µÄ¹Øϵ£»
£¨3£©ÊÇ·ñ´æÔÚ³£Êý¦Ë£¬Ê¹µÃ|AB|+|CD|=¦Ë|AB|•|CD|ºã³ÉÁ¢£¿Èô´æÔÚ£¬ÊÔÇó³ö¦ËµÄÖµ£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®
·ÖÎö£º£¨1£©¸ù¾ÝÈý½ÇÐÎABF2µÄÖܳ¤µÈÓÚ8
£¬ÍÖÔ²Ëĸö¶¥µã×é³ÉµÄÁâÐεÄÃæ»ýΪ8
¿ÉÇó³öa£¬bµÄÖµ£¬ÔÙÀûÓÃË«ÇúÏßG£ºx2-y2=m£¨m£¾0£©µÄ¶¥µãÊǸÃÍÖÔ²µÄ½¹µã½ø¶ø¿ÉÇó³ömµÄÖµ£®
£¨2£©¿ÉÀûÓÃбÂʹ«Ê½k=
±íʾ³ök1£¬k2ÔÙ̽Çók1ºÍk2µÄ¹Øϵ£¬¹ØϵÎ޷ǾÍÊǺͣ¬²î£¬»ý£¬ÉÌ£®
£¨3£©Ç£Éæµ½|AB|£¬|CD|£¬|AB|£¬|CD|ÐèÓõ½ÏÒ³¤¹«Ê½£¬Òò¶øÐèÒªÁªÁ¢·½³Ì£¬¹ÊÐèÒª°ÑÖ±ÏßABµÄ·½³ÌÉè³öÀ´ÁªÁ¢·½³Ì´úÈë¼ÆËã¼´¿É£®
2 |
2 |
£¨2£©¿ÉÀûÓÃбÂʹ«Ê½k=
y2-y1 |
x2-x1 |
£¨3£©Ç£Éæµ½|AB|£¬|CD|£¬|AB|£¬|CD|ÐèÓõ½ÏÒ³¤¹«Ê½£¬Òò¶øÐèÒªÁªÁ¢·½³Ì£¬¹ÊÐèÒª°ÑÖ±ÏßABµÄ·½³ÌÉè³öÀ´ÁªÁ¢·½³Ì´úÈë¼ÆËã¼´¿É£®
½â´ð£º½â£º£¨1£©ÓÉÌâÒâÖª£¬ÍÖÔ²ÖÐ4a=8
£¬a=2
£¬2ab=8
£¬b=2
ËùÒÔÍÖÔ²µÄ±ê×¼·½³ÌΪ
+
=1
ÓÖ¶¥µãÓë½¹µãÖغϣ¬ËùÒÔm=c2=a2-b2=4£»
ËùÒÔ¸ÃË«ÇúÏߵıê×¼·½³ÌΪ
-
=1£®
£¨2£©ÉèµãP£¨x£¬y£©£¬x¡Ù¡À2k1=
£¬k2=
k1•k2=
PÔÚË«ÇúÏßÉÏ£¬ËùÒÔ
-
=1y2=x2-4ËùÒÔk1•k2=1
£¨3£©ÉèÖ±ÏßAB£ºy=k1£¨x+2£©k1¡Ù0
ÓÉ·½³Ì×é
µÃ£¨2k12+1£©x2+8k12x+8k12-8=0
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©
ËùÒÔx1+x2=
£¬x1x2=
ÓÉÏÒ³¤¹«Ê½|AB|=
=
ͬÀí|CD|=
=
ÓÉk1•k2=1£¬k2=
´úÈëµÃ|CD|=
|AB|+|CD|=¦Ë|AB|CD|£¬¦Ë=
+
=
ËùÒÔ´æÔÚ¦Ë=
ʹµÃ|AB|+|CD|=¦Ë|AB|CD|³ÉÁ¢£®
2 |
2 |
2 |
ËùÒÔÍÖÔ²µÄ±ê×¼·½³ÌΪ
x2 |
8 |
y2 |
4 |
ÓÖ¶¥µãÓë½¹µãÖغϣ¬ËùÒÔm=c2=a2-b2=4£»
ËùÒÔ¸ÃË«ÇúÏߵıê×¼·½³ÌΪ
x2 |
4 |
y2 |
4 |
£¨2£©ÉèµãP£¨x£¬y£©£¬x¡Ù¡À2k1=
y |
x+2 |
y |
x-2 |
y2 |
x2-4 |
PÔÚË«ÇúÏßÉÏ£¬ËùÒÔ
x2 |
4 |
y2 |
4 |
£¨3£©ÉèÖ±ÏßAB£ºy=k1£¨x+2£©k1¡Ù0
ÓÉ·½³Ì×é
|
ÉèA£¨x1£¬y1£©£¬B£¨x2£¬y2£©
ËùÒÔx1+x2=
-8k12 |
2k12+1 |
8k12-8 |
2k12+1 |
ÓÉÏÒ³¤¹«Ê½|AB|=
1+k12 |
(x1+x2)2-4x1x2 |
4
| ||
2k12+1 |
ͬÀí|CD|=
1+k22 |
(x1+x2)2-4x1x2 |
4
| ||
2k22+1 |
ÓÉk1•k2=1£¬k2=
1 |
k1 |
4
| ||
k12+2 |
1 |
|AB| |
1 |
|CD| |
3
| ||
8 |
ËùÒÔ´æÔÚ¦Ë=
3
| ||
8 |
µãÆÀ£º´ËÌâµÚÒ»Îʽϼòµ¥Êô»ù´¡£¬µÚ¶þÎʽϸ´ÔÓ£¬Ò»°ãÇé¿öϵĹØϵÎ޷ǾÍÊǺͣ¬²î£¬»ý£¬ÉÌ£¬¹Ø¼üÊÇPÔÚË«ÇúÏßÉÏ£¬ËùÒÔ
-
=1y2=x2-4È»ºó´úÈë¼ÆË㣮µÚÈýÎÊÊÇƽ³£½Ï³£¼ûµÄÀàÐÍ£¬Ö÷ÒªÊǼÆËã·±Ëö£¬Ö»Òª¼ÆËã²»³ö´í¶¼¿ÉÒԴﵽĿµÄ£®
x2 |
4 |
y2 |
4 |
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿