题目内容

椭圆:的左顶点为,直线交椭圆两点(下),动点和定点都在椭圆上.
(1)求椭圆方程及四边形的面积.
(2)若四边形为梯形,求点的坐标.
(3)若为实数,,求的最大值.

(1).(2). (3).

解析试题分析:(1)将D的坐标代入即得,从而得椭圆的方程为.
代入.由此可得的面积,二者相加即得四边形的面积.(2)在椭圆中AP不可能平行BC,四边形ABCP又为梯形,所以必有,由此可得直线PC的方程,从而求得点P的坐标.(3)设,由得则间的关系,即,又因为点P在椭圆上,所以,由此可得,这样利用三角函数的范围便可求得的最大值.
(1)因为点D在椭圆上,所以
所以椭圆的方程为.
易得:的面积为.
直线BD的方程为,即.所以点A到BD的距离为.
所以.
(2)四边形ABCP为梯形,所以,直线PC的方程为:
.代入椭圆方程得(舍),
代入.所以点P的坐标为.
(3)设,则,即
因为点P在椭圆上,所以
由此可得
所以.
考点:1、椭圆的方程;2、四边形的面积;3、向量.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网