题目内容
【题目】已知函数,其中.
(Ⅰ)若,求函数的单调区间;
(Ⅱ)设.若在上恒成立,求实数的最大值.
【答案】(Ⅰ)单调递减区间为,单调递增区间为;(Ⅱ).
【解析】
(Ⅰ)求出函数的定义域以及导数,利用导数可求出该函数的单调递增区间和单调递减区间;
(Ⅱ)由题意可知在上恒成立,分和两种情况讨论,在时,构造函数,利用导数证明出在上恒成立;在时,经过分析得出,然后构造函数,利用导数证明出在上恒成立,由此得出,进而可得出实数的最大值.
(Ⅰ)函数的定义域为.
当时,.
令,解得(舍去),.
当时,,所以,函数在上单调递减;
当时,,所以,函数在上单调递增.
因此,函数的单调递减区间为,单调递增区间为;
(Ⅱ)由题意,可知在上恒成立.
(i)若,,,
,
构造函数,,则,
,,.
又,在上恒成立.
所以,函数在上单调递增,
当时,在上恒成立.
(ii)若,构造函数,.
,所以,函数在上单调递增.
恒成立,即,,即.
由题意,知在上恒成立.
在上恒成立.
由(Ⅰ)可知,
又,当,即时,函数在上单调递减,
,不合题意,,即.
此时
构造函数,.
,
,,
,
恒成立,所以,函数在上单调递增,恒成立.
综上,实数的最大值为
【题目】凤梨穗龙眼原产厦门,是厦门市的名果,栽培历史已有多年.龙眼干的级别按直径的大小分为四个等级,其中直径在区间为特级品,在的为一级品,在的为二级品,在的为三级品,某商家为了解某农场一批龙眼干的质量情况,随机抽取了个龙眼干作为样本(直径分布在区间),统计得到这些龙眼干的直径的频数分布表如下:
频数 | 1 | 29 | 7 |
用分层抽样的方法从样本的一级品和特级品中抽取个,其中一级品有个.
(1)求、的值,并估计这些龙眼干中特级品的比例;
(2)已知样本中的个龙眼干约克,该农场有千克龙眼干待出售,商家提出两种收购方案:
方案A:以元/千克收购;
方案B:以级别分装收购,每袋个,特级品元/袋、一级品元/袋、二级品元/袋、三级品元/袋.用样本的频率分布估计总体分布,哪个方案农场的收益更高?并说明理由.