题目内容

设函数f(x)=ax(a>0且a≠1)与g(x)=bx(b>0且b≠1)的反函数分别为
f-1(x)与g-1(x),若lga+lgb=0,则为f-1(x)与g-1(x)的图象的位置关系是


  1. A.
    关于x轴对称
  2. B.
    关于y轴对称
  3. C.
    关于原点对称
  4. D.
    关于直线y=x对称
A
分析:先求出函数f(x)=ax(a>0且a≠1)的反函数f-1(x)=logax,再求出g(x)=bx(b>0且b≠1)的反函数g-1(x),发现这两个反函数的解析式中,自变量相同,函数值相反,所以,图象关于x轴对称.
解答:∵lga+lgb=0,
∴ab=1,
∵函数f(x)=ax(a>0且a≠1),
∴f-1(x)=logax
∵g(x)=bx(b>0且b≠1),
∴g-1(x)=logbx===-logax
∴f-1(x)与g-1(x)的自变量相同,函数值相反,
所以,图象关于x轴对称.
故选A
点评:本题考查反函数的求法,奇偶函数的图象的对称性.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网