题目内容
【题目】已知二次函数,关于实数的不等式的解集为.
(1)当时,解关于的不等式:;
(2)是否存在实数,使得关于的函数()的最小值为?若存在,求实数的值;若不存在,说明理由.
【答案】(1)当时,原不等式的解集为;当时,原不等式的解集为.(2)
【解析】
试题分析:(1)由二次不等式解集与二次方程根的关系得:的两根为和,且,从而,解得,再化简不等式,因式分解:,最后根据两根2与大小关系,分三种情况讨论不等式解集(2)先化简函数,为一元二次函数,其中,再根据对称轴与定义区间位置关系研究函数最小值:因为,所以当时,取最小值
试题解析:(1)由不等式的解集为知,关于的方程的两根为和,且,
由根与系数关系,得∴
所以原不等式化为,
①当时,原不等式化为,且,解得或;
②当时,原不等式化为,解得且;
③当时,原不等式化为,且,解得或;
综上所述:
当时,原不等式的解集为;
当时,原不等式的解集为.
(2)假设存在满足条件的实数,
由(1)得:,,
.
令(),则,(),
对称轴,
因为,所以,,
所以函数在单调递减,
所以当时,的最小值为,解得.
【题目】已知椭圆C的中心在原点,左焦点为F1(﹣1,0),右准线方程为:x=4.
(1)求椭圆C的标准方程;
(2)若椭圆C上点N到定点M(m,0)(0<m<2)的距离的最小值为1,求m的值及点N的坐标.
【题目】随着资本市场的强势进入,互联网共享单车“忽如一夜春风来”,遍布了一二线城市的大街小巷.为了解共享单车在市的使用情况,某调查机构借助网络进行了问卷调查,并从参与调查的网友中抽取了200人进行抽样分析,得到表格:(单位:人)
经常使用 | 偶尔或不用 | 合计 | |
30岁及以下 | 70 | 30 | 100 |
30岁以上 | 60 | 40 | 100 |
合计 | 130 | 70 | 200 |
(1)根据以上数据,能否在犯错误的概率不超过0.15的前提下认为市使用共享单车情况与年龄有关?
(2)现从所抽取的30岁以上的网友中利用分层抽样的方法再抽取5人.
(i)分别求这5人中经常使用、偶尔或不用共享单车的人数;
(ii)从这5人中,再随机选出2人赠送一件礼品,求选出的2人中至少有1人经常使用共享单车的概率.
参考公式: ,其中.
参考数据:
0.15 | 0.10 | 0.05 | 0.025 | 0.010 | |
2.072 | 2.706 | 3.841 | 5.024 | 6.635 |