题目内容
【题目】在平面直角坐标系中,已知椭圆: ()的离心率且椭圆上的点到点的距离的最大值为3.
(Ⅰ)求椭圆的方程;
(Ⅱ)在椭圆上,是否存在点,使得直线: 与圆: 相交于不同的两点、,且的面积最大?若存在,求出点的坐标及对应的的面积;若不存在,请说明理由.
【答案】(1);(2)存在,M的坐标为、、、,最大值为。
【解析】试题分析:(1)离心率,得到,即此时椭圆方程为,设椭圆上的点为P,
两点间的距离等于3,可得到b=1,所以可求得椭圆方程;(2)在解析几何中,三角形的面积公式通常有两种计算方式,,本题由于没有给出角度的关系,所以采用第一种方法。通过联立方程即可得到M的坐标。
试题解析:(Ⅰ)因为,所以,于是. 1分
设椭圆上任一点,椭圆方程为,,=
①当,即时,(此时舍去; 3分
②当即时,5分
综上椭圆C的方程为。 6分
(Ⅱ)圆心到直线的距离为,弦长,所以的面积为8分
点,10分
当时,由得
综上所述,椭圆上存在四个点、、、,使得直线与圆相交于不同的两点、,且的面积最大,且最大值为. 12分
【题目】某校数学课外兴趣小组为研究数学成绩是否与性别有关,先统计本校高三年级每个学生一学期数学成绩平均分(采用百分制),剔除平均分在分以下的学生后,共有男生名,女生名.现采用分层抽样的方法,从中抽取了名学生,按性别分为两组,并将两组学生成绩分为组,得到如下所示频数分布表.
分数段 | ||||||
男 | ||||||
女 |
(Ⅰ)规定分以上为优分(含分),请你根据已知条件作出列联表.
优分 | 非优分 | 合计 | |
男生 | |||
女生 | |||
合计 |
(Ⅱ)根据你作出的列联表判断是否有以上的把握认为“数学成绩与性别有关”.
附表及公式:
,其中.
【题目】随着电商的快速发展,快递业突飞猛进,到目前,中国拥有世界上最大的快递市场.某快递公司收取快递费用的标准是:重量不超过的包裹收费10元;重量超过的包裹,除收费10元之外,每超过(不足,按计算)需再收5元.
该公司将最近承揽的100件包裹的重量统计如下:
包裹重量(单位:) | 1 | 2 | 3 | 4 | 5 |
包裹件数 | 43 | 30 | 15 | 8 | 4 |
公司对近60天,每天揽件数量统计如下表:
包裹件数范围 | 0~100 | 101~200 | 201~300 | 301~400 | 401~500 |
包裹件数(近似处理) | 50 | 150 | 250 | 350 | 450 |
天数 | 6 | 6 | 30 | 12 | 6 |
以上数据已做近似处理,并将频率视为概率.
(1)计算该公司未来5天内恰有2天揽件数在101~300之间的概率;
(2)①估计该公司对每件包裹收取的快递费的平均值;
②根据以往的经验,公司将快递费的三分之一作为前台工作人员的工资和公司利润,剩余的用作其他费用.目前前台有工作人员3人,每人每件揽件不超过150件,日工资100元.公司正在考虑是否将前台工作人员裁减1人,试计算裁员前后公司每日利润的数学期望,若你是公司老总,是否进行裁减工作人员1人?