题目内容
【题目】已知椭圆C: (a>b>0)经过点(,1),以原点为圆心、椭圆短半轴长为半径的圆经过椭圆的焦点.
(Ⅰ)求椭圆C的方程;
(Ⅱ)设过点(-1,0)的直线l与椭圆C相交于A,B两点,试问在x轴上是否存在一个定点M,使得恒为定值?若存在,求出该定值及点M的坐标;若不存在,请说明理由.
【答案】(Ⅰ) (Ⅱ)-.
【解析】试题分析:(Ⅰ) 由以原点为圆心、椭圆短半轴长为半径的圆经过椭圆的焦点可知,将点 代入椭圆方程,即可求得和的值,从而求得椭圆方程;(Ⅱ) 分类讨论,当斜率存在时,将直线方程代入椭圆方程,由韦达定理及向量数量积的坐标运算,及恒为定值即可求得的值,从而求得的值及点坐标;当直线的斜率不存在时,点,则时,求得的值及点坐标.
试题解析:(Ⅰ)由题意可得圆的方程为x2+y2=b2.因为该圆经过椭圆的焦点,所以半焦距c=b,所以a2=2b2.将点(,1)代入椭圆方程可得b2=2,a2=4,
所以椭圆C的方程为.
(Ⅱ)设点A(x1,y1),B(x2,y2),M(m,0).
当直线l的斜率k存在时,设直线l的方程为y=k(x+1).
联立得(1+2k2)x2+4k2x+2k2-4=0,
则x1+x2=,x1x2=,
又y1y2=k2(x1+1)(x2+1)=k2(x1x2+x1+x2+1)=k2=,
而=(x1-m)(x2-m)+y1y2=+
=
=为定值,
只需,解得m=-,从而=-,
当直线l的斜率k不存在时,点A(-1, ),B(-1,-),
此时,当m=-时, =(-1-m)(-1-m)-=-.
综上,存在点M(-,0),使得=-.
【方法点晴】本题主要考查待定系数求椭圆方程以及直线与椭圆的位置关系和平面向量数量积公式,属于难题.用待定系数法求椭圆方程的一般步骤;①作判断:根据条件判断椭圆的焦点在轴上,还是在轴上,还是两个坐标轴都有可能;②设方程:根据上述判断设方程或 ;③找关系:根据已知条件,建立关于、、的方程组;④得方程:解方程组,将解代入所设方程,即为所求.
【题目】已知具有线性相关关系的两个变量之间的几组数据如下表所示:
2 | 4 | 6 | 8 | 10 | |
3 | 6 | 7 | 10 | 12 |
(1)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程,并估计当时, 的值;
(2)将表格中的数据看作五个点的坐标,则从这五个点中随机抽取2个点,求恰有1个点落在直线右下方的概率.
参考公式: , .