题目内容
13.已知f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$.(1)求f(x)的周期及最值;
(2)在△ABC中,c=$\sqrt{3}$,f(C)=0,若$\overrightarrow{m}$=(1,sinA)与$\overrightarrow{n}$=(2,sinB)共线,求a,b的值.
分析 (1)由三角函数公式化简可得f(x)=sin(2x-$\frac{π}{6}$)-1,易得周期和最值;
(2)由(1)易得C=$\frac{π}{3}$,再由向量平行和正弦定理可得b=2a,代入余弦定理可得a值,进而可得b值.
解答 解:(1)化简可得f(x)=$\frac{\sqrt{3}}{2}$sin2x-cos2x-$\frac{1}{2}$
=$\frac{\sqrt{3}}{2}$sin2x-$\frac{1}{2}$cos2x-1=sin(2x-$\frac{π}{6}$)-1,
∴f(x)的周期T=$\frac{2π}{2}$=π,最大值为0,最小值为-2;
(2)在△ABC中,c=$\sqrt{3}$,f(C)=0,
∴sin(2C-$\frac{π}{6}$)-1,结合C为三角形内角可得C=$\frac{π}{3}$,
又∵$\overrightarrow{m}$=(1,sinA)与$\overrightarrow{n}$=(2,sinB)共线,
∴sinB=2sinA,由正弦定理可得b=2a,
再由余弦定理可得c2=a2+b2-2abcosC,
代入数据可得3=a2+4a2-4a2×$\frac{1}{2}$,
解得a=1,可得b=2
点评 本题考查平面向量的平行关系,涉及解三角形,属基础题.
练习册系列答案
相关题目
1.“光盘行动”已经发起两年,为了调查人们的节约意识,某班几位同学组成研究性学习小组,从某社区[25,55]岁的人群中随机抽取n人进行了一次调查,得到如下统计表:
(1)求a,b的值,并估计本社区[25,55]岁的人群中“光盘族”人数所占的比例;
(2)从年龄段在[35,45)的“光盘族”中采用分层抽样法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队,求选取的2名领队分别来自[35,40)和[40,45)两个年龄段的概率.
组数 | 分组 | 频数 | 频率 | 关盘组占本组的比例 |
第一组 | [25,30) | 50 | 0.05 | 30% |
第二组 | [30,35) | 100 | 0.1 | 30% |
第三组 | [35,40) | 150 | 0.15 | 40% |
第四组 | [40,45) | 200 | 0.2 | 50% |
第五组 | [45,50) | a | b | 65% |
第六组 | [50,55) | 200 | 0.2 | 60% |
(2)从年龄段在[35,45)的“光盘族”中采用分层抽样法抽取8人参加节约粮食宣传活动,并从这8人中选取2人作为领队,求选取的2名领队分别来自[35,40)和[40,45)两个年龄段的概率.
3.为了解市民对2015年中央电视台举办的春节联欢晚会的关注情况,某市广电局对该市市民进行了一次随机问卷调查,下面是调查中其中一个方面得到的统计数据.
现按关注方式用分层抽样的方法从参与问卷调查的市民中抽取50名,其中“看直播”的有24名.
(1)求m的值;
(2)该市广电局决定从所调查的“看直播”的720名市民中,仍用分层抽样的方法随机抽取6名进行座谈,再从这6名市民中随机抽取2名颁发幸运礼品,记获得幸运礼品的女性市民的人数为X,求X的分布列及数学期望.
看直播 | 看转播 | 不看 | |
男性 | 480 | m | 180 |
女性 | 240 | 150 | 90 |
(1)求m的值;
(2)该市广电局决定从所调查的“看直播”的720名市民中,仍用分层抽样的方法随机抽取6名进行座谈,再从这6名市民中随机抽取2名颁发幸运礼品,记获得幸运礼品的女性市民的人数为X,求X的分布列及数学期望.