题目内容
17.一个三棱锥的三视图如图所示,其中正视图和侧视图是全等的等腰三角形,则此三棱锥外接球的表面积为( )
A. | $\frac{9π}{4}$ | B. | 9π | C. | 4π | D. | π |
分析 由题意,确定三棱锥的形状,设三棱锥外接球的半径为r,则r2=(1-r)2+($\frac{\sqrt{2}}{2}$)2,求出r,即可求出三棱锥外接球的表面积.
解答 解:由题意,三棱锥的一个侧面垂直于底面,底面是等腰直角三角形,顶点在底面中的射影是底面斜边的中点,
设三棱锥外接球的半径为r,则r2=(1-r)2+($\frac{\sqrt{2}}{2}$)2,
∴r=$\frac{3}{4}$,
∴三棱锥外接球的表面积为4$π×\frac{9}{16}$=$\frac{9π}{4}$,
故选:A.
点评 本题考查球和几何体之间的关系,本题解题的关键是确定三棱锥外接球的半径,从而得到外接球的表面积.
练习册系列答案
相关题目
7.深圳市于2014年12月29日起实施小汽车限购政策.根据规定,每年发放10万个小汽车名额,其中电动小汽车占20%,通过摇号方式发放,其余名额通过摇号和竞价两种方式各发放一半.政策推出后,某网站针对不同年龄段的申请意向进行了调查,结果如下表所示:
(1)采取分层抽样的方式从30至50岁的人中抽取10人,求其中各种意向人数;
(2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;
(3)用样本估计总体,在全体市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为ξ,求ξ的分布列和数学期望.
申请意向 年龄 | 摇号 | 竞价(人数) | 合计 | |
电动小汽车(人数) | 非电动小汽车(人数) | |||
30岁以下 (含30岁) | 50 | 100 | 50 | 200 |
30至50岁 (含50岁) | 50 | 150 | 300 | 500 |
50岁以上 | 100 | 150 | 50 | 300 |
合计 | 200 | 400 | 400 | 1000 |
(2)在(1)中选出的10个人中随机抽取4人,求其中恰有2人有竞价申请意向的概率;
(3)用样本估计总体,在全体市民中任意选取4人,其中摇号申请电动小汽车意向的人数记为ξ,求ξ的分布列和数学期望.
12.已知函数f(x)是奇函数,当x>0时,f(x)=x2+ln(x+$\sqrt{1+{x}^{2}}$),则当x<0时,f(x)=( )
A. | -x2+ln(x+$\sqrt{1+{x}^{2}}$) | B. | x2-ln(x+$\sqrt{1+{x}^{2}}$) | C. | -x2+ln(-x+$\sqrt{1+{x}^{2}}$) | D. | x2+ln(x+$\sqrt{1+{x}^{2}}$) |
2.某大学志愿者协会有10名同学,成员构成如下表,其中表中部分数据不清楚,只知道从这10名同学中随机抽取一位,抽到该名同学为“数学专业”的概率为$\frac{2}{5}$.
现从这10名同学中随机选取3名同学参加社会公益活动(每位同学被选到的可能性相同).
(Ⅰ) 求m,n的值;
(Ⅱ)求选出的3名同学恰为专业互不相同的男生的概率;
(Ⅲ)设ξ为选出的3名同学中“女生或数学专业”的学生的人数,求随机变量ξ的分布列及其数学期望Eξ.
专业 性别 | 中文 | 英语 | 数学 | 体育 |
男 | n | 1 | m | 1 |
女 | 1 | 1 | 1 | 1 |
(Ⅰ) 求m,n的值;
(Ⅱ)求选出的3名同学恰为专业互不相同的男生的概率;
(Ⅲ)设ξ为选出的3名同学中“女生或数学专业”的学生的人数,求随机变量ξ的分布列及其数学期望Eξ.
9.我省城乡居民社会养老保险个人年缴费分100,200,300,400,500,600,700,800,900,1000(单位:元)十个档次,某社区随机抽取了72名居民,按缴费在100~500元,600~1000元,以及年龄在20~39岁,40~59岁之间进行了统计,相关数据如下:
(1)用分层抽样的方法在缴费100~500元之间的居民中随机抽取6人,则年龄在20~39岁之间应抽取几人?(2)在缴费100~500元之间抽取的6人中,随机选取2人进行到户走访,求这2人的年龄都在40~59岁之间的概率.
100~500元 | 600~1000元 | 总计 | |
20~39岁 | 12 | 9 | 31 |
40~59岁 | 24 | 17 | 41 |
总计 | 36 | 36 | 72 |
7.已知数列{an}的前n项和Sn=n2,则a32-a22的值为( )
A. | 9 | B. | 16 | C. | 21 | D. | 11 |