题目内容
7.若非零向量$\overrightarrow{a}$=(a1,a2),$\overrightarrow{b}$=(b1,b2),则a1b1+a2b2=0是$\overrightarrow{a}$⊥$\overrightarrow{b}$的充要条件.分析 由$\overrightarrow{a}$⊥$\overrightarrow{b}$可得$\overrightarrow{a}$$•\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|•cos90°=0.推出a1b1+a2b2=0;由a1b1+a2b2=0可得$\overrightarrow{a}$$•\overrightarrow{b}$=0,即$\overrightarrow{a}$⊥$\overrightarrow{b}$.
解答 解:若$\overrightarrow{a}$⊥$\overrightarrow{b}$,则$\overrightarrow{a}$$•\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|•cos90°=0.即a1b1+a2b2=0,
若a1b1+a2b2=0,则$\overrightarrow{a}$$•\overrightarrow{b}$=a1b1+a2b2=0,
设$\overrightarrow{a}$,$\overrightarrow{b}$夹角为θ,则$\overrightarrow{a}$$•\overrightarrow{b}$=|$\overrightarrow{a}$|•|$\overrightarrow{b}$|•cosθ=0,
而|$\overrightarrow{a}$|≠0,|$\overrightarrow{b}$|≠0,∴cosθ=0,即θ=90°,
∴$\overrightarrow{a}$⊥$\overrightarrow{b}$.
故答案为:a1b1+a2b2.
点评 本题考查了平面向量垂直的充要条件,是基础题.
A. | sin1-cos1 | B. | cos1-sin1 | C. | ±(sin1-cos1) | D. | sin1+cos1 |